Ankit Poudel
09/06/2024, 12:01 PMMarvin
09/06/2024, 12:01 PMAnkit Poudel
09/06/2024, 12:02 PMMarvin
09/06/2024, 12:02 PMAnkit Poudel
09/06/2024, 12:07 PMMarvin
09/06/2024, 12:07 PMpython
from prefect import task, flow, context
from prefect.states import State, Completed, Failed
import os
@task(on_failure=[lambda t, r, s: print(f"Task {t.name} failed")],
on_completion=[lambda t, r, s: print(f"Task {t.name} completed with state {s.name}")])
def resilient_task(data):
# Example state persistence (In reality, use a more robust storage like a database or Prefect's result storage)
last_state = context.get("last_state", {})
print(f"Last known state: {last_state}")
# Simulate task logic
try:
if os.environ.get("SHOULD_FAIL", "false").lower() == "true":
raise Exception("Simulated failure")
# Task successfully processed data
return {"status": "success", "processed_data": data}
except Exception as e:
return Failed(result={"status": "failure", "reason": str(e)})
@flow
def parent_flow(data):
# Attempt to retrieve last run's state
state = resilient_task.submit(data).result()
if isinstance(state, Failed):
print(f"Task failed with reason: {state.result['reason']}")
# Ensure state/retry logic is invoked (could be more advanced, e.g., implementing exponential backoff)
resilient_task.with_options(retries=3, retry_delay_seconds=10).submit(data)
else:
print(f"Task succeeded with result: {state.result}")
if __name__ == "__main__":
# Set environment variable to simulate task failure
os.environ["SHOULD_FAIL"] = "true"
parent_flow(data="sample data")
### Explanation
1. Task Definition:
- `resilient_task`: Custom Prefect task that processes data.
- Uses state hooks (on_failure
, on_completion
) to perform actions based on the task's state.
- Persists last known state using the context (replace this with more robust storage in production).
2. Flow Definition:
- `parent_flow`: Calls the resilient_task
.
- Checks the state of the task and retries if necessary (you can add more sophisticated retry mechanisms).
### Details
- Retries: Prefect allows tasks to be retried automatically based on configurations.
- State Persistence: Use Prefect's result storage for real-world use (the demo uses in-memory context).
- State Hooks: Log or handle states specifically using hooks.
For an in-depth understanding, visit the Prefect docs on state management.
Good luck slogging through code evolutions and state persistence! I’m sure your tasks will be eternally grateful for your efforts.Ankit Poudel
09/06/2024, 12:09 PMMarvin
09/06/2024, 12:09 PMpython
from prefect import task, flow, context
from prefect.states import State, Completed, Failed
import os
import json
# Simulate an external storage (like Redis, S3, etc.)
external_state_storage_path = "task_state.json"
def save_state(task_name, state):
"""Simulated external state saving."""
previous_states = load_all_states()
previous_states[task_name] = state
with open(external_state_storage_path, "w") as f:
json.dump(previous_states, f)
def load_state(task_name):
"""Simulated external state loading."""
all_states = load_all_states()
return all_states.get(task_name, {})
def load_all_states():
"""Loads all previous states from simulated storage."""
if os.path.exists(external_state_storage_path):
with open(external_state_storage_path, "r") as f:
return json.load(f)
return {}
@task(name="resilient_task", on_failure=[lambda t, r, s: print(f"Task {t.name} failed")],
on_completion=[lambda t, r, s: print(f"Task {t.name} completed with state {s.name}")])
def resilient_task(data):
# Load the last known state from external storage
last_state = load_state(task_name="resilient_task")
print(f"Last known state: {last_state}")
# Task logic
try:
if os.environ.get("SHOULD_FAIL", "false").lower() == "true":
raise Exception("Simulated failure")
# Task successfully processed data
result = {"status": "success", "processed_data": data, "version": "v2"}
save_state("resilient_task", result) # Save the successful state externally
return Completed(result=result)
except Exception as e:
failure_state = Failed(result={"status": "failure", "reason": str(e), "version": "v2"})
save_state("resilient_task", failure_state) # Save the failure state externally
return failure_state
@flow
def parent_flow(data):
# Call the resilient_task and handle retries
state = resilient_task.submit(data).result()
if isinstance(state, Failed):
print(f"Task failed with reason: {state.result['reason']}")
# Example retry mechanism
resilient_task.with_options(retries=3, retry_delay_seconds=10).submit(data)
else:
print(f"Task succeeded with result: {state.result}")
if __name__ == "__main__":
# Set environment variable to simulate task failure
os.environ["SHOULD_FAIL"] = "true"
parent_flow(data="sample data")
### Explanation
1. External State Storage:
- States are saved and loaded from an external storage (here simulated using a JSON file).
- This ensures the state persists across different runs, even if there are code changes.
2. Backward Compatibility:
- Each state is tagged with a version.
- When loading the state, handle different versions accordingly in your task logic.
3. Retries and State Hooks:
- As before, retries and state hooks provide robust mechanisms to handle failures and completions.
### Key Adjustments
- External Storage: In practice, replace the JSON file with a robust storage backend (e.g., databases, cloud storage).
- State Versioning: By including a version in your state, you can handle backward compatibility when refactoring code.Marvin
09/06/2024, 12:09 PMAnkit Poudel
09/10/2024, 9:47 AMMarvin
09/10/2024, 9:47 AMeror:TypeError: Object of type State is not JSON serializable 153200.048 | ERROR | Flow run 'loose-quokka' - Finished in state Failed('Flow run encountered an exception: TypeError: Object of type State is not JSON serializable') Traceback (most recent call last): File "/home/ankit/grepsr/pline-workflows/test.py", line 47, in resilient_task raise Exception("Simulated failure") Exception: Simulated failure During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ankit/grepsr/pline-workflows/test.py", line 76, in <module> parent_flow(data="sample data") File "/home/ankit/grepsr/pline-workflows/.venv/lib/python3.12/site-packages/prefect/flows.py", line 1334, in call return run_flow( ^^^^^^^^^ File "/home/ankit/grepsr/pline-workflows/.venv/lib/python3.12/site-packages/prefect/flow_engine.py", line 810, in run_flow return run_flow_sync(**kwargs) ^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ankit/grepsr/pline-workflows/.venv/lib/python3.12/site-packages/pref
Ankit Poudel
09/10/2024, 9:48 AMMarvin
09/10/2024, 9:48 AMerrror:Traceback (most recent call last): File "/home/ankit/grepsr/pline-workflows/test.py", line 47, in resilient_task raise Exception("Simulated failure") Exception: Simulated failure During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/ankit/grepsr/pline-workflows/.venv/lib/python3.12/site-packages/prefect/task_engine.py", line 755, in run_context yield self File "/home/ankit/grepsr/pline-workflows/.venv/lib/python3.12/site-packages/prefect/task_engine.py", line 1308, in run_task_sync engine.call_task_fn(txn) File "/home/ankit/grepsr/pline-workflows/.venv/lib/python3.12/site-packages/prefect/task_engine.py", line 778, in call_task_fn result = call_with_parameters(self.task.fn, parameters) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/ankit/grepsr/pline-workflows/.venv/lib/python3.12/site-packages/prefect/utilities/callables.py", line 206, in call_with_parameters return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/home/ankit/greps
Ankit Poudel
09/10/2024, 9:49 AMMarvin
09/10/2024, 9:49 AMpython
from prefect import task, flow, context
from prefect.states import State, Completed, Failed
import os
import json
# Simulate an external storage (like Redis, S3, etc.)
external_state_storage_path = "task_state.json"
def save_state(task_name, state):
"""Simulated external state saving."""
previous_states = load_all_states()
previous_states[task_name] = state
with open(external_state_storage_path, "w") as f:
json.dump(previous_states, f)
def load_state(task_name):
"""Simulated external state loading."""
all_states = load_all_states()
return all_states.get(task_name, {})
def load_all_states():
"""Loads all previous states from simulated storage."""
if os.path.exists(external_state_storage_path):
with open(external_state_storage_path, "r") as f:
return json.load(f)
return {}
@task(name="resilient_task", on_failure=[lambda t, r, s: print(f"Task {t.name} failed")],
on_completion=[lambda t, r, s: print(f"Task {t.name} completed with state {s.name}")])
def resilient_task(data):
try:
# Load the last known state from external storage
last_state = load_state(task_name="resilient_task")
print(f"Last known state: {last_state}")
# Task logic
if os.environ.get("SHOULD_FAIL", "false").lower() == "true":
raise Exception("Simulated failure")
# Task successfully processed data
result = {"status": "success", "processed_data": data, "version": "v2"}
save_state("resilient_task", result) # Save the successful state externally
return Completed(result=result)
except Exception as e:
failure_state = Failed(result={"status": "failure", "reason": str(e), "version": "v2"})
save_state("resilient_task", failure_state) # Save the failure state externally
return failure_state
@flow
def parent_flow(data):
try:
# Call the resilient_task and handle retries
state = resilient_task.submit(data).result()
if isinstance(state, Failed):
print(f"Task failed with reason: {state.result['reason']}")
# Example retry mechanism
resilient_task.with_options(retries=3, retry_delay_seconds=10).submit(data)
else:
print(f"Task succeeded with result: {state.result}")
except Exception as e:
print(f"Flow encountered an exception: {str(e)}")
if __name__ == "__main__":
# Set environment variable to simulate task failure
os.environ["SHOULD_FAIL"] = "true"
parent_flow(data="sample data")
### Additional Debugging Tips
1. Print Statements:
- Add more print statements before and after key operations to track progress and identify issues.
2. Complete Traceback:
- If possible, provide the complete traceback so I can identify the exact problem.
3. Check Versions:
- Ensure you are using compatible versions of Prefect and other dependencies.
Run the updated code and see if it helps in narrowing down the issue. Keep me posted with the complete traceback if the issue persists!Ankit Poudel
09/10/2024, 9:50 AMAnkit Poudel
09/10/2024, 9:50 AMMarvin
09/10/2024, 9:50 AMState
object isn't directly serializable to JSON. Let's modify your functions to handle this.
### Solution
1. Serialize State Objects: Convert the State
object to a JSON-compatible format before saving it.
2. Deserialize State Objects: Convert the JSON-compatible format back to a Prefect State
object when loading.
### Updated Code
python
from prefect import task, flow, context
from prefect.states import State, Completed, Failed
import os
import json
# Simulate an external storage (like Redis, S3, etc.)
external_state_storage_path = "task_state.json"
def serialize_state(state):
"""Convert State object to a JSON-compatible dictionary."""
return {
"type": type(state).__name__,
"result": state.result,
"message": state.message,
}
def deserialize_state(state_dict):
"""Convert JSON-compatible dictionary back to a State object."""
state_type = state_dict.get("type")
state_cls = globals().get(state_type)
if state_cls:
return state_cls(
result=state_dict.get("result"),
message=state_dict.get("message")
)
return None
def save_state(task_name, state):
"""Simulated external state saving."""
previous_states = load_all_states()
previous_states[task_name] = serialize_state(state)
with open(external_state_storage_path, "w") as f:
json.dump(previous_states, f)
def load_state(task_name):
"""Simulated external state loading."""
all_states = load_all_states()
state_dict = all_states.get(task_name, {})
return deserialize_state(state_dict)
def load_all_states():
"""Loads all previous states from simulated storage."""
if os.path.exists(external_state_storage_path):
with open(external_state_storage_path, "r") as f:
return json.load(f)
return {}
@task(name="resilient_task", on_failure=[lambda t, r, s: print(f"Task {t.name} failed")],
on_completion=[lambda t, r, s: print(f"Task {t.name} completed with state {s.name}")])
def resilient_task(data):
try:
# Load the last known state from external storage
last_state = load_state(task_name="resilient_task")
print(f"Last known state: {last_state}")
# Task logic
if os.environ.get("SHOULD_FAIL", "false").lower() == "true":
raise Exception("Simulated failure")
# Task successfully processed data
result = Completed(result={"status": "success", "processed_data": data, "version": "v2"})
save_state("resilient_task", result) # Save the successful state externally
return result
except Exception as e:
failure_state = Failed(result={"status": "failure", "reason": str(e), "version": "v2"})
save_state("resilient_task", failure_state) # Save the failure state externally
return failure_state
@flow
def parent_flow(data):
try:
# Call the resilient_task and handle retries
state = resilient_task.submit(data).result()
if isinstance(state, Failed):
print(f"Task failed with reason: {state.result['reason']}")
# Example retry mechanism
resilient_task.with_options(retries=3, retry_delay_seconds=10).submit(data)
else:
print(f"Task succeeded with result: {state.result}")
except Exception as e:
print(f"Flow encountered an exception: {str(e)}")
if __name__ == "__main__":
# Set environment variable to simulate task failure
os.environ["SHOULD_FAIL"] = "true"
parent_flow(data="sample data")
### Explanation
1. Serialization and Deserialization Functions:
- `serialize_state`: Converts a Prefect State
object to a JSON-compatible dictionary.
- `deserialize_state`: Converts a JSON-compatible dictionary back to a Prefect State
object.
2. Updated save_state and load_state:Marvin
09/10/2024, 9:50 AM