Slackbot
09/04/2025, 11:57 AMMarvin
09/04/2025, 11:57 AMMarvin
09/04/2025, 11:59 AMSqlAlchemyConnector
from the prefect-sqlalchemy
collection to provide a SQLAlchemy Engine/Connection to pandas, then call DataFrame.to_sql(...)
.
Here’s a minimal, working pattern.
1) Install dependencies
pip install "prefect[sqlalchemy]" pandas
2) (Optional) Create and save a connector block
from prefect_sqlalchemy.database import SqlAlchemyConnector
# Example for Postgres with psycopg3
connector = SqlAlchemyConnector(
connection_info="<postgresql+psycopg://user:password@host:5432/dbname>",
# connect_args={"sslmode": "require"} # optional
)
connector.save("my-db", overwrite=True)
3) Write a pandas DataFrame using the connector (outside or inside a Prefect flow)
import pandas as pd
from prefect_sqlalchemy.database import SqlAlchemyConnector
df = pd.DataFrame(
[{"id": 1, "name": "Alice"}, {"id": 2, "name": "Bob"}]
)
# Load a saved connector, or construct one inline (see step 2)
connector = SqlAlchemyConnector.load("my-db")
# Option A: Use an Engine
engine = connector.get_engine()
with engine.begin() as conn: # ensures commit/rollback
df.to_sql(
name="my_table",
con=conn,
schema="public", # optional; depends on your DB
if_exists="append", # or "replace"/"fail"
index=False,
method="multi", # batches INSERTs
chunksize=1000 # good for large DataFrames
)
# Option B: Use a Connection directly
# with connector.get_connection() as conn:
# df.to_sql("my_table", con=conn, if_exists="append", index=False, method="multi", chunksize=1000)
Using within a Prefect flow
from prefect import flow
import pandas as pd
from prefect_sqlalchemy.database import SqlAlchemyConnector
@flow
def load_dataframe():
df = pd.DataFrame([{"id": 1, "name": "Alice"}, {"id": 2, "name": "Bob"}])
connector = SqlAlchemyConnector.load("my-db")
with connector.get_connection() as conn:
df.to_sql(
"my_table",
con=conn,
if_exists="append",
index=False,
method="multi",
chunksize=1000,
)
if __name__ == "__main__":
load_dataframe()
Notes and tips
- Pandas to_sql
expects a synchronous SQLAlchemy connectable. If you’re using an async driver (e.g., postgresql+asyncpg
), switch to a sync URL (e.g., postgresql+psycopg
) for to_sql
.
- You can control column types with SQLAlchemy types:
from sqlalchemy import types as satypes
df.to_sql("my_table", con=conn, if_exists="append", index=False, dtype={"name": satypes.String(255)})
- For large loads, method="multi"
and chunksize
help performance. For Postgres, drivers like psycopg3 typically perform well.
- If the table doesn’t exist, to_sql
can create it when if_exists="append"
(unless your DB/schema permissions prevent it).
Helpful docs
- Prefect SQLAlchemy collection: prefect-sqlalchemy docs
- Pandas `to_sql`: DataFrame.to_sql
- SQLAlchemy database URLs: SQLAlchemy database URLs
If you can share which database/driver you’re using and roughly how large your DataFrame is, I can tailor the example (e.g., best driver options, dtype mapping, and performance tweaks).