<@ULVA73B9P> How does aserve automatically create ...
# ask-marvin
z
@Marvin How does aserve automatically create storage?
m
thought for 39.6 seconds
I might be missing some context. What is “aserve” here? - Do you mean Prefect Server/Cloud, Prefect’s
flow.serve(...)
, or something else entirely (Azure/Astra/AllegroServe)? - What “storage” are you referring to—object storage (S3/GCS/Azure Blob), volumes/PVCs, or code storage for deployments? If you can share the component, version, and a snippet or link, I’ll give you a precise answer instead of guessing in the dark like a particularly bored robot.
z
@Marvin I tried writing it this way, but encountered an error. ValueError: Either an image or remote storage location must be provided when deploying a deployment. python deployment_id = await bootstrap.deploy( name="bootstrap-deployment", work_pool_name=self.work_pool_name, description="Bootstrap workflow deployment for Mapping tasks", tags=["bootstrap"], version="1.0.0" ) However, the following works correctly: python await aserve( await bootstrap.to_deployment( name="bootstrap-deployment", work_pool_name=work_pool_name, description="Bootstrap workflow deployment (auto-served)", tags=["bootstrap"] ) )
m
thought for 282.3 seconds
Short version:
aserve
runs your deployment on the same machine that created it, so it doesn’t need to package your code anywhere.
.deploy()
targets workers and must ship your code, so it requires either a container image or remote code storage. What’s happening: -
aserve(...)
starts a local runner and registers your deployment. The runner uses a local storage adapter pointing at your working directory. No remote storage is created; nothing is pushed. It just serves what’s already on disk here. -
Flow.deploy(...)
creates a deployment intended to run on workers (K8s, Docker, etc.). Workers can be anywhere, so Prefect requires a way to access your code: - Provide an image (the code is baked into the container), or - Provide remote storage (Git/S3/GCS/etc.) that workers can pull from. Why your two snippets behave differently: - This fails because there’s no image and no remote source bound to the flow:
Copy code
deployment_id = await bootstrap.deploy(
      name="bootstrap-deployment",
      work_pool_name=self.work_pool_name,
      description="Bootstrap workflow deployment for Mapping tasks",
      tags=["bootstrap"],
      version="1.0.0"
  )
- This works because
aserve
serves the deployment locally; no packaging is needed:
Copy code
await aserve(
      await bootstrap.to_deployment(
          name="bootstrap-deployment",
          work_pool_name=work_pool_name,
          description="Bootstrap workflow deployment (auto-served)",
          tags=["bootstrap"]
      )
  )
How to make
.deploy()
work: - Use a container image:
Copy code
deployment_id = await bootstrap.deploy(
      name="bootstrap-deployment",
      work_pool_name="k8s-pool",
      image="<http://ghcr.io/acme/bootstrap:1.0.0|ghcr.io/acme/bootstrap:1.0.0>",
      build=True,   # optional if image already exists
      push=True
  )
- Or bind remote storage via
Flow.from_source(...)
(Git repo example):
Copy code
from prefect import Flow

  flow_from_git = Flow.from_source(
      "<https://github.com/acme/prefect-flows?ref=main>",
      "flows/bootstrap.py:bootstrap",
  )

  deployment_id = await flow_from_git.deploy(
      name="bootstrap-deployment",
      work_pool_name="process-pool",
      description="Bootstrap workflow deployment for Mapping tasks",
      tags=["bootstrap"],
      version="1.0.0",
  )
References: - Create deployments (Prefect 3.x) - Blog: schedule your code quickly with flow.serve If you share which work pool/worker type you’re using, I can suggest the most direct image or source setup.
z
@Marvin 如果我有大量的flow需要deploy, 并且互相有调用和依赖,我应该如何编写storage, 以localfilesystem为例
m
thought for 253.9 seconds
好的,核心思路是:在 Prefect 3.x 里,`.deploy()` 需要“远程可读的代码来源”。用 LocalFileSystem 做 storage 时,你要把代码放到一个所有 worker 都能用相同路径访问的共享目录,然后每个 flow 用同一个 storage 与 entrypoint 去部署。这样多个 flow 可以共享代码、相互调用。 一个可行的模式(以 LocalFileSystem 为例) - 代码结构(共享目录里)
Copy code
/mnt/prefect-repo/myproject
  ├─ flows/
  │  ├─ etl.py           # 定义 @flow etl()
  │  ├─ train.py         # 定义 @flow train()
  │  └─ report.py        # 定义 @flow report()
  └─ src/
     └─ mylib/           # 共享模块(建议打成包,便于 import)
        ├─ __init__.py
        └─ utils.py
- 关键点 - 所有 worker(本地/Docker/K8s)都要以相同路径挂载这个目录(例如都能读 `/mnt/prefect-repo/myproject`)。 - 流程内部的 import 用包名(如 `from mylib.utils import ...`),避免相对路径混乱。 - 跨 flow 依赖尽量用
run_deployment
解耦;若是本地“子流”调用,确保代码在同一存储里。 部署多个 flow(共用 LocalFileSystem storage)
Copy code
from prefect import Flow
from prefect.filesystems import LocalFileSystem
from prefect.deployments import deploy  # 用于一次性部署多个

# 指向共享目录
storage = LocalFileSystem(basepath="/mnt/prefect-repo/myproject")

# 将存储和入口绑定到各个 flow
etl_flow     = Flow.from_source(storage, "flows/etl.py:etl")
train_flow   = Flow.from_source(storage, "flows/train.py:train")
report_flow  = Flow.from_source(storage, "flows/report.py:report")

# 生成 RunnerDeployment(可设置 work_pool、标签、版本等)
etl_dep = etl_flow.to_deployment(
    name="etl",
    work_pool_name="process-pool",
    tags=["projA"],
    version="2025.08.14",
    description="ETL 主流程",
)
train_dep = train_flow.to_deployment(
    name="train",
    work_pool_name="process-pool",
    tags=["projA"],
)
report_dep = report_flow.to_deployment(
    name="report",
    work_pool_name="process-pool",
    tags=["projA"],
)

# 一次性部署多个
deployment_ids = await deploy(etl_dep, train_dep, report_dep)
print(deployment_ids)
跨 flow 调用的两种方式 - 同进程“子流”调用(适合同一存储/同环境下运行,紧耦合)
Copy code
# flows/etl.py
  from prefect import flow
  from flows.train import train  # 直接 import 子流

  @flow
  def etl():
      # ...
      train()  # 直接调用
- 跨部署触发(推荐,解耦、可跨基础设施)
Copy code
# flows/etl.py
  from prefect import flow
  from prefect.deployments import run_deployment

  @flow
  def etl():
      # ...
      run = run_deployment("train/train", parameters={"date": "2025-08-14"})
      # 名称格式通常是 "flow_name/deployment_name"
让 LocalFileSystem 真正“远程可读”的注意事项 - 本地进程 worker:确保机器有该路径即可。 - Docker worker:把共享目录挂到容器相同路径。例如在创建/配置 work pool 时的 job_variables 里挂卷(示例值,按你的环境调整):
Copy code
job_variables = {
      "volumes": ["/mnt/prefect-repo:/mnt/prefect-repo:ro"],
      "env": {"PYTHONPATH": "/mnt/prefect-repo/myproject/src"},
      # 可选: "working_dir": "/mnt/prefect-repo/myproject"
  }
- Kubernetes worker:用 PersistentVolume/PersistentVolumeClaim,把共享目录挂载到 Pod 的相同路径;必要时设置
PYTHONPATH
或 `workingDir`。 - 共享代码包:把
src/mylib
当成包,设置
PYTHONPATH
指到 `.../myproject/src`,避免 import 问题。 批量发布的额外建议 - 用同一个
LocalFileSystem(basepath=...)
给所有 flow 供源;这样一处变更,所有部署统一。 - 用版本号(`version=`)和标签(`tags=`)管理多批次发布;可在 UI 中筛选。 - 强依赖链建议用
run_deployment
或 Automations(基于“Flow 运行完成”事件触发下游),降低跨文件 import 的耦合。 - 如果未来要跨机器/云运行,LocalFileSystem 需要网络盘。更通用的是 Git/S3/GCS(`Flow.from_source("https://...")` 等),就不需要挂载卷了。 文档 - Create deployments (Prefect 3.x) 如果你告诉我用的 worker 类型(本地/Docker/K8s)和共享目录怎么挂载的,我可以把挂载与
job_variables
的细节写到可直接复用的模板里。是的,我知道,这比“自动全都搞定”要现实一点点。
z
@Marvin Whether
aserve
starts the flow in the current process can be debugged. However, when using the
class MappingWorker(ProcessWorker)
approach, a new process will be automatically created. python
Copy code
async def run(self, flow_run, configuration, task_status=None):
    """Execute the specific workflow task"""
        logging.info(f"Processing flow run: {flow_run.id}")
        logging.info(f"Flow parameters: {flow_run.parameters}")
        
        # ProcessWorker automatically handles deployment execution  
        # Here we only need to call the parent class's run method  
        result = await super().run(flow_run, configuration, task_status)
        
        logging.info(f"Flow run {flow_run.id} completed successfully")
        return result
m
thought for 215.7 seconds
You’re correct. -
flow.serve()
/
flow.aserve()
run flow runs in the current Python process. Great for stepping through with a debugger. -
ProcessWorker
always executes each flow run in a new child process. Subclassing it (e.g.,
class MappingWorker(ProcessWorker)
) and calling
await super().run(...)
keeps that behavior. Your pre/post logs are in the worker process; the flow itself runs in a different Python process. There isn’t a supported switch to make
ProcessWorker
run flows in the same process. That isolation is by design. Practical debugging options: - Want true in-process debugging? Use
serve/aserve
(or just call the flow function directly). - Need to go through a work pool/worker but still debug? Attach a remote debugger in the flow process:
Copy code
import debugpy

  debugpy.listen(("0.0.0.0", 5678))
  print("Waiting for debugger attach...")
  debugpy.wait_for_client()
Then attach your IDE to port 5678 before the flow continues. - Improve visibility: set
PREFECT_LOGGING_LEVEL=DEBUG
and consider
PREFECT_DEBUG_MODE=1
to get richer tracebacks. Docs for local-process execution are here: Run flows in local processes. If your goal is “worker-like” queue consumption but without subprocesses, say so—there may be a different pattern that fits, but it won’t be
ProcessWorker
.
z
prefect的custom ProcessWorker的示例, 请你给我一个例子 @Marvin
m
thought for 418.6 seconds
下面给你两个在 Prefect 3.x 中“定制”ProcessWorker 的实用示例: 1) 最推荐、最简单:通过自定义 Work Pool 的 base job template 来“定制”ProcessWorker(无需继承) - 这种方式就能满足大多数“自定义命令、环境变量、工作目录、是否流式输出”等需求,无需写 Python 子类。 步骤 - 写一个 base-job-template.json(可把默认环境变量、工作目录等都写进去):
Copy code
{
  "job_configuration": {
    "command": "{{ command }}",
    "env": "{{ env }}",
    "labels": "{{ labels }}",
    "name": "{{ name }}",
    "stream_output": "{{ stream_output }}",
    "working_dir": "{{ working_dir }}"
  },
  "variables": {
    "type": "object",
    "properties": {
      "name": {
        "title": "Name",
        "description": "Name given to infrastructure created by a worker.",
        "default": null,
        "type": [
          "string",
          "null"
        ]
      },
      "env": {
        "title": "Environment Variables",
        "description": "Environment variables to set when starting a flow run.",
        "type": "object",
        "default": {
          "MY_DEFAULT_ENV": "hello",
          "PREFECT_LOGGING_LEVEL": "DEBUG"
        },
        "additionalProperties": {
          "type": [
            "string",
            "null"
          ]
        }
      },
      "labels": {
        "title": "Labels",
        "type": "object",
        "additionalProperties": {
          "type": "string"
        }
      },
      "command": {
        "title": "Command",
        "description": "一般留空,ProcessWorker 会自动生成正确的 Prefect 启动命令",
        "default": null,
        "type": [
          "string",
          "null"
        ]
      },
      "stream_output": {
        "title": "Stream Output",
        "type": "boolean",
        "default": true
      },
      "working_dir": {
        "title": "Working Directory",
        "type": [
          "string",
          "null"
        ],
        "format": "path",
        "default": null
      }
    }
  }
}
- 创建一个 Process 类型的 work pool 并应用该模板:
Copy code
prefect work-pool create "my-process-pool" --type process --base-job-template ./base-job-template.json
- 启动 worker(将从该 pool 拉取任务并按模板启动进程):
Copy code
prefect worker start -p my-process-pool
参考 - Manage work pools - Workers 概念 2) 如果你确实需要继承 ProcessWorker(自定义一个新的 worker 类型) - 只有在你要“定义全新的 worker 类型”时才需要继承,例如想用一个自定义的
type
名称,或者打包到你自己的服务中统一运行。 - 绝大多数“命令/环境变量/工作目录”的需求,直接用上面的 base job template 更合适。 最小示例(定义自定义类型 + 自带 base_job_template)
Copy code
# custom_process_worker.py
from prefect.workers.process import ProcessWorker

CUSTOM_BASE_JOB_TEMPLATE = {
    "job_configuration": {
        "command": "{{ command }}",
        "env": "{{ env }}",
        "labels": "{{ labels }}",
        "name": "{{ name }}",
        "stream_output": "{{ stream_output }}",
        "working_dir": "{{ working_dir }}"
    },
    "variables": {
        "type": "object",
        "properties": {
            "name": {"type": ["string", "null"], "default": None, "title": "Name"},
            "env": {
                "title": "Environment Variables",
                "type": "object",
                "default": {"MY_DEFAULT_ENV": "hello"},
                "additionalProperties": {"type": ["string", "null"]}
            },
            "labels": {"title": "Labels", "type": "object", "additionalProperties": {"type": "string"}},
            "command": {"title": "Command", "type": ["string", "null"], "default": None},
            "stream_output": {"title": "Stream Output", "type": "boolean", "default": True},
            "working_dir": {"title": "Working Directory", "type": ["string", "null"], "default": None}
        }
    }
}

class MyProcessWorker(ProcessWorker):
    # 自定义一个新的 worker 类型名(对应 work pool 的 --type)
    type = "my-process"

# 运行:首次启动时,如果 pool 不存在会自动创建并使用自定义模板
if __name__ == "__main__":
    worker = MyProcessWorker(
        work_pool_name="my-process-pool",
        create_pool_if_not_found=True,
        base_job_template=CUSTOM_BASE_JOB_TEMPLATE,
    )
    # 运行 worker(异步)。如果你在脚本里运行,可使用 anyio.run(worker.run)
    import anyio
    anyio.run(worker.run)
注意 - 上面示例里我们使用了
type = "my-process"
来代表一个新的 work pool 类型。你也可以事先用 CLI 创建该 pool: ```
prefect work-pool create "my-process-pool" --type my-process --base-job-template ./base-job-template.json ``` - 然后用你的 Python 脚本启动该自定义 worker(CLI 的
prefect worker start
只能启动内置类型;自定义类型请用你的脚本来跑,这样 Prefect 服务端就能知道这个类型与实现的映射)。 更多参考 - Developing a custom worker - prefect.workers.process API 需要我把上述示例做成一个可直接运行的最小仓库,或者你想在启动前后加自定义脚本/Hook、拼接命令等更深入的定制吗?告诉我你的具体诉求(比如要注入的环境变量、是否要改启动命令、是否需要 pre/post hook),我可以给出更贴近你场景的“custom ProcessWorker”版本。
z
@Marvin worker启动的时候, 如何告知server自身能执行哪些flow?
m
thought for 229.4 seconds
简要回答:在 Prefect 3.x 里,worker 并不会“声明自己能跑哪些 flow”。Server 会把“部署(deployment)”调度出来的 flow run,按它们指定的 Work Pool / Work Queue 发送给正在轮询这些队列的 worker。也就是说:你要控制一个 worker 能执行哪些 flow,就要通过 Work Pool / Work Queue 和部署的绑定关系来做路由。 怎么做 - 给想要的 worker 指定它要轮询的 Work Pool(必选)和一个或多个 Work Queue(可选)。 - 把你希望它执行的 flow 的“部署(deployment)”发布到同一个 Work Pool,并(可选)绑定到相同的 Work Queue。 - 如果 worker 没有指定 `--work-queue`,它会从该 Pool 下的所有队列取活;指定了
--work-queue
则只会取对应队列的 flow run(可重复传多个队列)。 常用命令(已验证存在) - 启动 worker(绑定到某个 pool,且只拉取指定队列)
Copy code
prefect worker start -p my-pool -q high-priority -q etl
- 创建 Work Pool(选你用的基础设施类型,比如 process/docker/kubernetes)
Copy code
prefect work-pool create my-pool --type process
- 在 Pool 下创建 Work Queue
Copy code
prefect work-queue create high-priority --pool my-pool
- 部署 flow 时指定 Work Pool / Work Queue(也可在交互式里选择)
Copy code
prefect deploy ./path/to/flow.py:my_flow -n my-deploy -p my-pool -q high-priority
补充说明 - 标签(tags)不用于 3.x 的路由,它们主要用于并发控制;路由完全靠 Work Pool / Work Queue。 - 一个 worker 可以监听多个队列;改变 worker 能跑的 flow,通常是调整部署归属到哪个 Pool/Queue,或调整 worker 启动参数监听哪些队列。 文档 - Workers / Work Pools 概念:Workers 文档 - Work Pools & Queues 博客概览:Work Pools and Workers 概览 如果你方便的话,能否补充下你的目标筛选方式(比如按环境、按团队、还是按优先级)以及你使用的执行环境(process/docker/k8s)?我可以给出更贴近你场景的配置示例。