<@ULVA73B9P> when running on DaskTaskRunner or Ray...
# ask-marvin
v
@Marvin when running on DaskTaskRunner or RayTaskRunner how can I make 1 task to run on multiple CPUS? is that possible
m
thought for 30.1 seconds
Let me break this down for both task runners: ### DaskTaskRunner For DaskTaskRunner, you can specify CPU requirements using the
task_runner
configuration when creating your flow. Here's how you can do it:
Copy code
python
from prefect import flow, task
from prefect_dask import DaskTaskRunner

@task(retries=2)
def cpu_intensive_task():
    # Your CPU intensive code here
    pass

@flow(
    task_runner=DaskTaskRunner(
        cluster_kwargs={"n_workers": 2, "threads_per_worker": 4}
    )
)
def my_flow():
    cpu_intensive_task()
Additionally, you can use Dask's native resource specification at the task level using the
dask_resource_requirements
parameter:
Copy code
python
@task(
    retries=2,
    task_run_name="cpu-heavy-task",
    tags=["cpu-intensive"],
    dask_resource_requirements={"CPU": 4}  # Request 4 CPUs for this task
)
def cpu_intensive_task():
    # Your CPU intensive code here
    pass
### RayTaskRunner For RayTaskRunner, you can specify CPU requirements at the task level using Ray's resource specifications:
Copy code
python
from prefect import flow, task
from prefect_ray import RayTaskRunner

@task(ray_options={"num_cpus": 4})  # Request 4 CPUs for this task
def cpu_intensive_task():
    # Your CPU intensive code here
    pass

@flow(task_runner=RayTaskRunner())
def my_flow():
    cpu_intensive_task()
Important Notes: 1. Make sure you have enough CPU resources available in your environment to fulfill these requests 2. For RayTaskRunner, you'll need to install the
prefect-ray
package:
pip install prefect-ray
3. For DaskTaskRunner, you'll need to install the
prefect-dask
package:
pip install prefect-dask
The exact number of CPUs you can allocate depends on: - Your machine's hardware capabilities - The cluster configuration (if running in a distributed environment) - Other tasks that might be running concurrently Let me know if you need any clarification or have questions about specific configuration options for either task runner!
v
@Marvin Is it okay RayDaskCallback(init_kwargs={“num_cpus”: 60}): when running dask manipulations while using Ray worker?
m
thought for 26.5 seconds
Yes, it is okay to use
RayDaskCallback(init_kwargs={"num_cpus": 60})
when running Dask operations within a Ray environment, but there are some important considerations: 1. Resource Allocation: - The
num_cpus
parameter in
init_kwargs
tells Ray how many CPUs to allocate for the Dask cluster - Make sure your system actually has access to the number of CPUs you're requesting (60 in this case) - These CPUs will be reserved for Dask operations specifically 2. Best Practices: - Don't allocate more CPUs than your system has available - Consider leaving some CPU resources available for Ray's other operations - Be aware that this allocation is separate from any CPU specifications in your Ray task configurations 3. Potential Gotchas: - If you're running in a Ray worker, these CPUs will be allocated from the Ray cluster's resources - Over-allocation could lead to resource contention or scheduling issues - The actual parallelism you achieve might be limited by other factors in your computation Here's an example of how this might look in practice:
Copy code
python
from ray.util.dask import RayDaskCallback
import dask.dataframe as dd

# Configure the callback
callback = RayDaskCallback(init_kwargs={"num_cpus": 60})

# Use it in a context manager
with callback:
    # Your Dask operations here
    df = dd.read_csv("large_file.csv")
    result = df.compute()
Recommendations: 1. Monitor your resource usage during execution to ensure you're not over-allocating 2. Consider making the CPU count configurable based on your deployment environment 3. If you're running multiple Dask operations, you might want to adjust the CPU count dynamically Would you like me to provide more specific guidance about your use case? It would help to know: - What kind of Dask operations you're running - The total CPU resources available in your environment - Whether you're running other CPU-intensive tasks concurrently
v
@Marvin ray_option doesn’t seem a valid argument: Unexpected argument(s) Possible callees: task(__fn: (**P) -> R) task(__fn: None = None, *, name: str | None = None, description: str | None = None, tags: Iterable[str] | None = None, version: str | None = None, cache_policy: CachePolicy | type[NotSet] = NotSet, cache_key_fn: (TaskRunContext, dict[str, Any]) -> str | None | None = None, cache_expiration: timedelta | None = None, task_run_name: () -> str | TaskRunNameCallbackWithParameters | str | None = None, retries: int = 0, retry_delay_seconds: float | int | list[float] | (int) -> list[float] | None = None, retry_jitter_factor: float | None = None, persist_result: bool | None = None, result_storage: WritableFileSystem | str | None = None, result_storage_key: str | None = None, result_serializer: Serializer | str | None = None, cache_result_in_memory: bool = True, timeout_seconds: int | float | None = None, log_prints: bool | None = None, refresh_cache: bool | None = None, on_completion: list[(Task, TaskRun, State) -> Awaitable[None] | None] | None = None, on_failure: list[(Task, TaskRun, State) -> Awaitable[None] | None] | None = None, retry_condition_fn: (Task, TaskRun, State) -> Awaitable[bool] | bool | None = None, viz_return_value: Any | None = None, asset_deps: list[str | Asset] | None = None) task(__fn: None = None, *, name: str | None = None, description: str | None = None, tags: Iterable[str] | None = None, version: str | None = None, cache_policy: CachePolicy | type[NotSet] = NotSet, cache_key_fn: (TaskRunContext, dict[str, Any]) -> str | None | None = None, cache_expiration: timedelta | None = None, task_run_name: () -> str | TaskRunNameCallbackWithParameters | str | None = None, retries: int = 0, retry_delay_seconds: float | int | list[float] | (int) -> list[float] | None = None, retry_jitter_factor: float | None = None, persist_result: bool | None = None, result_storage: WritableFileSystem | str | None = None, result_storage_key: str | None = None, result_serializer: Serializer | str | None = None, cache_result_in_memory: bool = True, timeout_seconds: int | float | None = None, log_prints: bool | None = None, refresh_cache: bool | None = None, on_completion: list[(Task, TaskRun, State) -> Awaitable[None] | None] | None = None, on_failure: list[(Task, TaskRun, State) -> Awaitable[None] | None] | None = None, retry_condition_fn: (Task, TaskRun, State) -> Awaitable[bool] | bool | None = None, viz_return_value: Any | None = None, asset_deps: list[str | Asset] | None = None) task(*, name: str | None = None, description: str | None = None, tags: Iterable[str] | None = None, version: str | None = None, cache_policy: CachePolicy | type[NotSet] = NotSet, cache_key_fn: (TaskRunContext, dict[str, Any]) -> str | None | None = None, cache_expiration: timedelta | None = None, task_run_name: () -> str | TaskRunNameCallbackWithParameters | str | None = None, retries: int = 0, retry_delay_seconds: float | int | list[float] | (int) -> list[float] = 0, retry_jitter_factor: float | None = None, persist_result: bool | None = None, result_storage: WritableFileSystem | str | None = None, result_storage_key: str | None = None, result_serializer: Serializer | str | None = None, cache_result_in_memory: bool = True, timeout_seconds: int | float | None = None, log_prints: bool | None = None, refresh_cache: bool | None = None, on_completion: list[(Task, TaskRun, State) -> Awaitable[None] | None] | None = None, on_failure: list[(Task, TaskRun, State) -> Awaitable[None] | None] | None = None, retry_condition_fn: (Task, TaskRun, State) -> Awaitable[bool] | bool | None = None, viz_return_value: Any | None = None, asset_deps: list[str | Asset] | None = None)
m
Your message was too long, here's your message at the allowed limit: ray_option doesn’t seem a valid argument Unexpected argument(s) Possible callees task(__fn (**P) -> R) task(__fn None = None * name str | None = None description str | None = None tags Iterable[str] | None = None version str | None = None cache_policy CachePolicy | type[NotSet] = NotSet cache_key_fn (TaskRunContext dict[str Any]) -> str | None | None = None cache_expiration timedelta | None = None task_run_name () -> str | TaskRunNameCallbackWithParameters | str | None = None retries int = 0 retry_delay_seconds float | int | list[float] | (int) -> list[float] | None = None retry_jitter_factor float | None = None persist_result bool | None = None result_storage WritableFileSystem | str | None = None result_storage_key str | None = None result_serializer Serializer | str | None = None cache_result_in_memory bool = True timeout_seconds int | float | None = None log_prints bool | None = None refresh_cache bool | None = None on_completion list[(Task TaskRun State) -> Awaitable[None] | None] | None = None on_failure list[(Task TaskRun State) -> Awaitable[None] | None] | None = None retry_condition_fn (Task TaskRun State) -> Awaitable[bool] | bool | None = None viz_return_value Any | None = None asset_deps list[str | Asset] | None = None) task(__fn None = None * name str | None = None description str | None = None tags Iterable[str] | None = None version str | None = None cache_policy CachePolicy | type[NotSet] = NotSet cache_key_fn (TaskRunContext dict[str Any]) -> str | None | None = None cache_expiration timedelta | None = None task_run_name () -> str | TaskRunNameCallbackWithParameters | str | None = None retries int = 0 retry_delay_seconds float | int | list[float] | (int) -> list[float] | None = None retry_jitter_factor float | None = None persist_result bool | None = None result_storage WritableFileSystem | str | None = None result_storage_key str | None = None result_serializer Serializer | str | None = None cache_result_in_memory bool = True timeout_seconds int | float | None = None log_prints bool | None = None refresh_cache bool | None = None on_completion list[(Task TaskRun State) -> Awaitable[None] | None] | None = None on_failure list[(Task TaskRun State) -> Awaitable[None] | None] | None = None retry_condition_fn (Task TaskRun State) -> Awaitable[bool] | bool | None = None viz_return_value Any | None = None asset_deps list[str | Asset] | None = None) task(* name str | None = None description str | None = None tags Iterable[str] | None = None version str | None = None cache_policy CachePolicy | type[NotSet] = NotSet cache_key_fn (TaskRunContext dict[str Any]) -> str | None | None = None cache_expiration timedelta | None = None task_run_name () -> str | TaskRunNameCallbackWithParameters | str | None = None retries int = 0 retry_delay_seconds float | int | list[float] | (int) -> list[float] = 0 retry_jitter_factor float | None = None persist_result bool | None = None result_storage WritableFileSystem | str | None = None result_storage_key str | None = None result_serializer
v
@Marvin ray_options={“num_cpus”: 4} doesn’t seem a valid argument
m
thought for 21.1 seconds
I apologize for my earlier incorrect information. You're right - the
ray_options
parameter is not valid. Instead, when using Ray with Prefect, you should use the
remote_options
context manager to specify CPU requirements. Here's the correct way to do it:
Copy code
python
from prefect import flow, task
from prefect_ray import RayTaskRunner
from prefect_ray.context import remote_options

@task
def cpu_intensive_task():
    # Your CPU intensive code here
    pass

@flow(task_runner=RayTaskRunner())
def my_flow():
    with remote_options(num_cpus=4):  # Request 4 CPUs for this task
        result = cpu_intensive_task.submit()
    return result
Key points: 1. Use the
remote_options
context manager from
prefect_ray.context
2. The context manager accepts parameters like
num_cpus
and
num_gpus
3. Apply it around the task submission using
.submit()
You can also use it for multiple tasks:
Copy code
python
@flow(task_runner=RayTaskRunner())
def my_flow():
    with remote_options(num_cpus=4):
        # All tasks submitted within this context will use 4 CPUs
        result1 = task1.submit()
        result2 = task2.submit()
Make sure you have installed the required package:
Copy code
bash
pip install prefect-ray
Would you like me to provide more examples or explain any specific aspects of resource allocation with Ray?