David DeStefano
08/01/2025, 2:26 PMprefect.exceptions.PrefectHTTPStatusError: Client error '413 Request Entity Too Large' for url '<https://api.prefect.cloud/api/accounts/58992b19-dd4e-4985-9caa-15bbb1e80aed/workspaces/26152678-6c12-4db4-80cf-177ef2f303fc/flow_runs/0688be62-5739-7763-8000-7b6005e55a4b/set_state>'
Response: {'details': 'request body exceeds limits'}
Marvin
08/01/2025, 2:26 PMMarvin
08/01/2025, 2:27 PMpython
@task
def process_data(data):
# Process the data
result = do_processing(data)
# Save to external storage
path = save_to_storage(result)
# Return the path instead of the data
return path
@task
def next_step(result_path):
# Load data from storage when needed
data = load_from_storage(result_path)
# Continue processing
2. Process Data in Chunks
- Break down large datasets into smaller chunks
- Use task mapping to process chunks in parallel
- Aggregate results at the end if needed
3. Configure Result Storage
- Set up a result storage block (like S3ResultStorage) to handle large results
- This moves result handling out of Prefect Cloud and into your chosen storage
Here's a refactored example:
python
from prefect import flow, task
from prefect.artifacts import create_markdown_artifact
@task
def process_chunk(chunk_data):
# Process smaller chunk of data
result = do_processing(chunk_data)
# Save to temp storage and return reference
return save_to_temp_storage(result)
@flow
def main_flow():
# Break data into chunks
chunks = split_data_into_chunks(your_large_data)
# Process chunks in parallel
result_paths = process_chunk.map(chunks)
# Create summary without storing full results
create_markdown_artifact(
"Processing Summary",
f"Processed {len(chunks)} chunks of data. Results stored at: {result_paths}"
)
This approach will help you avoid the 413 error while still maintaining visibility into your workflow's execution.
Would you like me to provide more specific examples based on your particular use case or data storage preferences?