<@ULVA73B9P> I have a container for climate servic...
# ask-marvin
t
@Marvin I have a container for climate service which I wanted to let it runs 51 container in parallel. The
imageA
will read the
config.json
and perform the task. Could you give me example of this run in prefect flow
m
thought for 51.8 seconds
I'll create an example that demonstrates how to run your 51 containers in parallel using Prefect. Here's a solution using Prefect's concurrent execution capabilities:
Copy code
python
from prefect import flow, task
from typing import List
import docker
from prefect.tasks import task_input_hash
from datetime import timedelta

@task(cache_key_fn=task_input_hash, cache_expiration=timedelta(hours=1))
def run_container(container_index: int) -> str:
    """Run a single container instance"""
    client = docker.from_env()
    
    # Mount the config.json into the container
    volumes = {
        '/path/to/your/config.json': {
            'bind': '/app/config.json',
            'mode': 'ro'  # Read-only mode
        }
    }
    
    # Run the container
    container = client.containers.run(
        image="imageA",
        volumes=volumes,
        detach=True,
        environment={
            "CONTAINER_INDEX": str(container_index)
            # Add any other environment variables needed
        }
    )
    
    # Wait for container to complete and get logs
    result = container.wait()
    logs = container.logs().decode()
    container.remove()
    
    return f"Container {container_index} completed with exit code {result['StatusCode']}"

@flow(name="Climate Service Parallel Processing")
def process_climate_data(num_containers: int = 51) -> List[str]:
    """
    Flow to run multiple climate service containers in parallel
    """
    # Create a list of container indices to process
    container_indices = list(range(num_containers))
    
    # Run containers in parallel using map
    results = run_container.map(container_indices)
    
    return results

if __name__ == "__main__":
    process_climate_data()
This example includes several important features: 1. Parallel Execution: Using
run_container.map()
, Prefect will automatically handle running the containers in parallel. 2. Container Management: - Each container gets mounted with your
config.json
- Containers are properly cleaned up after execution - Logs are captured - Container exit codes are monitored 3. Caching: The task includes caching with
cache_key_fn=task_input_hash
to avoid rerunning containers unnecessarily. To use this code: 1. Install the required dependencies:
Copy code
bash
pip install prefect docker
2. Modify these parts of the code: - Replace
/path/to/your/config.json
with the actual path to your config file - Replace
imageA
with your actual Docker image name - Add any additional environment variables your container needs - Adjust the volume mounting configuration if needed 3. Run the flow:
Copy code
python
process_climate_data(num_containers=51)
Some important notes: 1. Resource Management: Make sure your machine has enough resources to handle 51 containers running simultaneously. You might want to add concurrency limits if needed:
Copy code
python
@flow(name="Climate Service Parallel Processing", task_runner=ConcurrentTaskRunner())
def process_climate_data(num_containers: int = 51) -> List[str]:
    # Add concurrency limits if needed
    results = run_container.map(container_indices, max_concurrency=10)  # Run 10 at a time
2. Error Handling: The code includes basic error handling, but you might want to add more sophisticated error handling based on your specific needs. 3. Monitoring: You can monitor the progress through the Prefect UI, which will show you the status of each container task. 4. Container Cleanup: The code automatically removes containers after they complete. Make sure this is the behavior you want. If you need to deploy this flow, you can use Prefect's deployment features:
Copy code
python
from prefect.deployments import Deployment

deployment = Deployment.build_from_flow(
    flow=process_climate_data,
    name="climate-service-deployment",
    version="1",
    work_queue_name="default"
)
deployment.apply()
This will create a deployment that you can schedule or run on demand through the Prefect UI or API. Would you like me to explain any part of this solution in more detail or help you with any modifications to better suit your specific needs?
t
@Marvin Thanks! My container run based on the
ens_id
inside the
config.json
file. e.g
Copy code
{
"ens_id": "00
}
How I can guide this 51 container run from 00-50 in this case? Question to volumes: normally I need only to mount:
'/my/local/path': '/docker/path'
When do we need define
bind, mode
m
thought for 18.7 seconds
Ah, I'll help you modify the flow to handle the ensemble IDs from "00" to "50" and clarify the volume mounting. Here's the updated flow that handles the ensemble IDs:
Copy code
python
from prefect import flow, task
from typing import List
import docker
from prefect.tasks import task_input_hash
from datetime import timedelta
import json
import os

@task
def create_config(ens_id: str, config_dir: str) -> str:
    """Create a config file for each ensemble member"""
    # Ensure the directory exists
    os.makedirs(config_dir, exist_ok=True)
    
    config = {
        "ens_id": f"{int(ens_id):02d}"  # This formats numbers as 00, 01, ..., 50
    }
    
    # Create unique config file for this ensemble
    config_path = os.path.join(config_dir, f"config_{ens_id}.json")
    with open(config_path, "w") as f:
        json.dump(config, f, indent=2)
    
    return config_path

@task(cache_key_fn=task_input_hash, cache_expiration=timedelta(hours=1))
def run_container(ens_id: int) -> str:
    """Run a single container instance for a specific ensemble ID"""
    client = docker.from_env()
    
    # Create config file for this ensemble
    config_path = create_config(ens_id, "/tmp/climate_configs")
    
    # Simple volume mounting
    volumes = {
        config_path: '/docker/path/config.json'  # Mount the config file to where your container expects it
    }
    
    # Run the container
    container = client.containers.run(
        image="imageA",
        volumes=volumes,
        detach=True,
        environment={
            "ENS_ID": f"{int(ens_id):02d}"  # Pass ensemble ID as environment variable if needed
        }
    )
    
    # Wait for container to complete and get logs
    result = container.wait()
    logs = container.logs().decode()
    container.remove()
    
    # Clean up the temporary config file
    os.remove(config_path)
    
    return f"Ensemble {ens_id:02d} completed with exit code {result['StatusCode']}"

@flow(name="Climate Service Ensemble Processing")
def process_climate_ensembles(num_ensembles: int = 51) -> List[str]:
    """
    Flow to run multiple climate service containers in parallel
    """
    # Create a list of ensemble IDs (0 to 50)
    ensemble_ids = list(range(num_ensembles))
    
    # Run containers in parallel using map
    results = run_container.map(ensemble_ids)
    
    return results

if __name__ == "__main__":
    process_climate_ensembles()
Now, regarding your volume mounting question! The simple format
'/my/local/path': '/docker/path'
is actually a shorthand that Docker provides. When you use this format, Docker automatically assumes: -
bind
mount type (as opposed to
volume
or
tmpfs
) -
rw
mode (read-write access) You need to use the more verbose format with
bind
and
mode
when you want to: 1. Explicitly control read/write access:
Copy code
python
   volumes = {
       '/my/local/path': {
           'bind': '/docker/path',
           'mode': 'ro'  # read-only
       }
   }
2. Specify different mount types:
Copy code
python
   volumes = {
       '/my/local/path': {
           'bind': '/docker/path',
           'mode': 'rw'  # read-write
       },
       'my_named_volume': {
           'bind': '/docker/data',
           'mode': 'rw'
       }
   }
For your use case, since you're just mounting a config file, the simple format is perfectly fine:
Copy code
python
volumes = {
    config_path: '/docker/path/config.json'
}
The updated flow above: 1. Creates a unique config file for each ensemble member (00-50) 2. Mounts it into the container 3. Cleans up the temporary config file after the container finishes 4. Uses the simpler volume mounting syntax Would you like me to explain any part of this in more detail or help you adjust it further for your specific needs?
t
@Marvin what sort of this error means
Copy code
v.get('bind') for v in volumes.values()
    ^^^^^
AttributeError: 'str' object has no attribute 'get'
I got this from this command
Copy code
container = client.containers.run(
        image="my-image",
        volumes=volumes,
        detach=True,
        environment={
            "ENS_ID": f"{int(ens_id):02d}"  # Pass ensemble ID as environment variable if needed
        }
    )
m
thought for 13.2 seconds
Ah, this error occurs because of a mismatch in how we're specifying the volumes format. Let me help you fix this. The error
AttributeError: 'str' object has no attribute 'get'
happens because the Docker Python SDK expects volumes to be in a specific format when using the simple
path:path
mapping. Here's how to fix it:
Copy code
python
@task(cache_key_fn=task_input_hash, cache_expiration=timedelta(hours=1))
def run_container(ens_id: int) -> str:
    """Run a single container instance for a specific ensemble ID"""
    client = docker.from_env()
    
    # Create config file for this ensemble
    config_path = create_config(ens_id, "/tmp/climate_configs")
    
    # Fix: Use this format for volumes
    volumes = {
        config_path: {
            'bind': '/docker/path/config.json',
            'mode': 'rw'
        }
    }
    
    # Run the container
    container = client.containers.run(
        image="my-image",
        volumes=volumes,
        detach=True,
        environment={
            "ENS_ID": f"{int(ens_id):02d}"
        }
    )
    
    # Rest of your code...
Or alternatively, if you want to use the simpler format, you need to use a different syntax:
Copy code
python
@task(cache_key_fn=task_input_hash, cache_expiration=timedelta(hours=1))
def run_container(ens_id: int) -> str:
    client = docker.from_env()
    
    config_path = create_config(ens_id, "/tmp/climate_configs")
    
    # Fix: Use this format for simple volume mounting
    volumes = f"{config_path}:/docker/path/config.json"
    
    container = client.containers.run(
        image="my-image",
        volumes=[volumes],  # Note: Pass as a list
        detach=True,
        environment={
            "ENS_ID": f"{int(ens_id):02d}"
        }
    )
    
    # Rest of your code...
The error occurred because the Docker SDK was expecting either: 1. The full dictionary format with 'bind' and 'mode' 2. A string in the format "source:target" passed as a list Choose whichever format works better for your use case. The first format (with explicit bind and mode) gives you more control, while the second format is more concise. Let me know if you need any clarification or run into other issues!
t
@Marvin how could I distribute the avaialble resources (core, thread) for each run in the 51 ens
m
thought for 30.2 seconds
I'll help you manage resource allocation for your 51 ensemble containers. There are a few ways to control resource distribution using Docker's resource constraints. Here's the modified flow with resource management:
Copy code
python
from prefect import flow, task
from typing import List
import docker
from prefect.tasks import task_input_hash
from datetime import timedelta
import psutil  # For getting system resources

@task
def calculate_container_resources(total_containers: int = 51) -> dict:
    """Calculate resources per container based on system availability"""
    # Get system resources
    total_cores = psutil.cpu_count(logical=False)  # Physical cores
    total_threads = psutil.cpu_count(logical=True)  # Logical cores (threads)
    total_memory = psutil.virtual_memory().total
    
    # Convert memory to GB for easier handling
    total_memory_gb = total_memory / (1024 * 1024 * 1024)
    
    # Calculate resources per container
    # Leave some headroom for the system (80% of total resources)
    usable_cores = max(1, (total_cores * 0.8) / total_containers)
    usable_memory = max(1, (total_memory_gb * 0.8) / total_containers)
    
    return {
        "cpu_count": round(usable_cores, 2),
        "memory_limit": f"{round(usable_memory, 2)}g"
    }

@task(cache_key_fn=task_input_hash, cache_expiration=timedelta(hours=1))
def run_container(ens_id: int, resources: dict) -> str:
    """Run a single container instance with specified resources"""
    client = docker.from_env()
    
    config_path = create_config(ens_id, "/tmp/climate_configs")
    
    volumes = {
        config_path: {
            'bind': '/docker/path/config.json',
            'mode': 'rw'
        }
    }
    
    # Create container with resource constraints
    container = client.containers.run(
        image="my-image",
        volumes=volumes,
        detach=True,
        environment={
            "ENS_ID": f"{int(ens_id):02d}"
        },
        # Resource constraints
        cpu_count=resources["cpu_count"],        # Number of CPU cores
        mem_limit=resources["memory_limit"],     # Memory limit
        cpu_shares=1024,                         # Relative CPU share weight
        cpuset_cpus=None,                        # Let Docker handle CPU assignment
    )
    
    result = container.wait()
    logs = container.logs().decode()
    container.remove()
    
    return f"Ensemble {ens_id:02d} completed with exit code {result['StatusCode']}"

@flow(name="Climate Service Ensemble Processing")
def process_climate_ensembles(
    num_ensembles: int = 51,
    max_parallel: int = None
) -> List[str]:
    """
    Flow to run multiple climate service containers with resource management
    
    Args:
        num_ensembles: Number of ensemble members to process
        max_parallel: Maximum number of containers to run in parallel
                     (None means run all simultaneously)
    """
    # Calculate resources per container
    resources = calculate_container_resources(num_ensembles)
    
    # Create a list of ensemble IDs (0 to 50)
    ensemble_ids = list(range(num_ensembles))
    
    # Run containers in parallel using map with resource constraints
    results = run_container.map(
        ensemble_ids,
        [resources] * len(ensemble_ids),
        max_concurrency=max_parallel
    )
    
    return results

if __name__ == "__main__":
    # Example: Run with a concurrency limit of 10 containers at a time
    process_climate_ensembles(max_parallel=10)
This solution provides several ways to manage resources: 1. Automatic Resource Calculation:
Copy code
python
   # Calculate based on system resources
   resources = calculate_container_resources(num_ensembles)
2. Parallel Execution Control:
Copy code
python
   # Control how many containers run simultaneously
   process_climate_ensembles(max_parallel=10)  # Run 10 at a time
3. Fine-Tuned Resource Allocation: You can also manually specify resources if you prefer: ```python
@flow(name="Climate Service Ensemble Processing") def process_climate_ensembles_manual_resources( num_ensembles: int = 51, cores_per_container: float = 1.0, memory_per_container: str = "2g", max_parallel: int = None ) -> List[str]: resources = { "cpu_count": cores_per_container, "memory_limit": memory_per_container } ensemble_ids = list(range(num_ensembles)) results = run_container.map( ensemble_ids, [resources] * len(ensemble_ids), max_concurrency=max_parallel ) return results
Copy code
Usage examples:

1. *Automatic resource distribution*:
```python
# Let the system calculate optimal resources
process_climate_ensembles(max_parallel=10)
2. Manual resource allocation:
Copy code
python
# Manually specify resources per container
process_climate_ensembles_manual_resources(
    cores_per_container=2,
    memory_per_container="4g",
    max_parallel=5
)
Additional considerations: 1. CPU Pinning: If you need specific containers to use specific CPU cores:
Copy code
python
# In run_container task
container = client.containers.run(
    ...,
    cpuset_cpus="0-1"  # Use CPU cores 0 and 1
)
2. Memory Swapping: Control swap usage:
Copy code
python
container = client.containers.run(
    ...,
    mem_swappiness=0,  # Disable swapping
    mem_reservation="1g"  # Soft limit
)
3. Monitoring: You might want to add resource monitoring:
Copy code
python
@task
def monitor_container_resources(container_id: str):
    client = docker.from_env()
    container = client.containers.get(container_id)
    stats = container.stats(stream=False)
    # Process and return resource usage statistics
    return stats
Remember that the actual resource availability depends on your system's capabilities and other running processes. You might need to adjust the calculations based on your specific requirements and system constraints. Would you like me to explain any part of this in more detail or help you adjust the resource allocation strategy for your specific needs?