David Martin Calalang
07/01/2025, 9:42 PMMarvin
07/01/2025, 9:42 PMMarvin
07/01/2025, 9:43 PMprefect-dask
and dask-cloudprovider
. Here's a complete example:
python
from prefect import flow, task
from prefect_dask import DaskTaskRunner
from dask_cloudprovider.aws import FargateCluster
import time
def create_fargate_cluster(**kwargs):
return FargateCluster(
image="daskdev/dask:latest", # or your custom image
n_workers=2,
fargate_use_private_ip=True,
# AWS-specific configuration
region_name="us-east-1", # specify your region
vpc="vpc-xxxxxx", # your VPC ID
cluster="your-ecs-cluster-name",
subnets=["subnet-xxxxx"], # your subnet IDs
security_groups=["sg-xxxxx"], # your security group IDs
**kwargs
)
@flow(
task_runner=DaskTaskRunner(
cluster_kwargs={"cluster_class": create_fargate_cluster}
)
)
def my_dask_flow():
# Your flow tasks here
results = []
for i in range(10):
results.append(my_task.submit(i))
return results
@task
def my_task(x):
time.sleep(1)
return x * 2
if __name__ == "__main__":
my_dask_flow()
To make this work, you'll need to:
1. Install the required packages:
bash
pip install prefect-dask dask-cloudprovider
2. Ensure you have proper AWS credentials configured (either through environment variables, AWS CLI configuration, or IAM roles)
3. Configure your AWS infrastructure:
- Set up an ECS cluster
- Configure VPC, subnets, and security groups
- Ensure proper IAM roles and permissions
Key points to prevent local cluster creation:
- Always specify the full AWS configuration in the FargateCluster
constructor
- Make sure your AWS credentials are properly configured
- Set fargate_use_private_ip=True
if your tasks need to communicate within a VPC
- Ensure your security groups allow proper communication between the scheduler and workers
Common issues to watch for:
1. If a local cluster is being created, it's often because the Fargate cluster creation failed silently. Check your AWS CloudWatch logs for details.
2. Ensure your security groups allow inbound/outbound traffic on the Dask ports (typically 8786-8787)
3. The VPC needs internet access (via NAT Gateway or Internet Gateway) for pulling Docker images
The prefect-dask
integration ensures proper lifecycle management of your Fargate cluster - it will be created when the flow starts and terminated when the flow completes, preventing unnecessary AWS costs.
Remember to replace the placeholder values (vpc-xxxxxx, subnet-xxxxx, etc.) with your actual AWS infrastructure details. Also, consider using Prefect blocks to store and manage these configuration details securely.
If you're still seeing local cluster creation, enable Dask logging to debug the issue:
python
import logging
logging.basicConfig(level=<http://logging.INFO|logging.INFO>)
logger = logging.getLogger("distributed")
logger.setLevel(logging.DEBUG)
This will help you identify where the cluster creation process might be failing and falling back to local mode.David Martin Calalang
07/01/2025, 10:01 PMMarvin
07/01/2025, 10:01 PMMarvin
07/01/2025, 10:02 PMpython
# Place logging configuration at the very top of your script,
# before any other imports or code
import logging
logging.basicConfig(level=<http://logging.INFO|logging.INFO>)
logger = logging.getLogger("distributed")
logger.setLevel(logging.DEBUG)
# Now proceed with the rest of your imports
from prefect import flow, task
from prefect_dask import DaskTaskRunner
from dask_cloudprovider.aws import FargateCluster
import time
def create_fargate_cluster(**kwargs):
return FargateCluster(
image="daskdev/dask:latest",
n_workers=2,
fargate_use_private_ip=True,
region_name="us-east-1",
vpc="vpc-xxxxxx",
cluster="your-ecs-cluster-name",
subnets=["subnet-xxxxx"],
security_groups=["sg-xxxxx"],
**kwargs
)
@flow(
task_runner=DaskTaskRunner(
cluster_kwargs={"cluster_class": create_fargate_cluster}
)
)
def my_dask_flow():
# Your flow tasks here
results = []
for i in range(10):
results.append(my_task.submit(i))
return results
@task
def my_task(x):
time.sleep(1)
return x * 2
if __name__ == "__main__":
my_dask_flow()
The logging configuration must be placed at the very beginning of your script because:
1. It needs to be configured before any Dask components are imported or initialized
2. Once loggers are created by imported modules, changing the basic configuration won't affect those already-created loggers
You can also add more detailed logging by including additional loggers:
python
# At the top of your script
import logging
logging.basicConfig(level=<http://logging.INFO|logging.INFO>)
# Dask distributed logger
distributed_logger = logging.getLogger("distributed")
distributed_logger.setLevel(logging.DEBUG)
# Dask cloud provider logger
cloudprovider_logger = logging.getLogger("dask_cloudprovider")
cloudprovider_logger.setLevel(logging.DEBUG)
# Add a stream handler if you want to see output in the console
handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
distributed_logger.addHandler(handler)
cloudprovider_logger.addHandler(handler)
This enhanced logging configuration will give you visibility into:
- The Dask cluster creation process
- Worker initialization and communication
- Any AWS Fargate-specific issues
- Task scheduling and execution
The logs will appear in your console output and can help diagnose why a local cluster might be created instead of the intended Fargate cluster.David Martin Calalang
07/02/2025, 12:06 AMMarvin
07/02/2025, 12:06 AMMarvin
07/02/2025, 12:06 AMfargate_use_private_ip
setting conflicts with your network setup
2. Required Configuration
Here's a more robust configuration that should help prevent the fallback to local:
python
from prefect import flow, task
from prefect_dask import DaskTaskRunner
from dask_cloudprovider.aws import FargateCluster
import time
def create_fargate_cluster():
return FargateCluster(
image="daskdev/dask:latest",
n_workers=2,
fargate_use_private_ip=True,
scheduler_timeout="30 minutes", # Increased timeout
find_address_timeout=300, # 5 minutes to find the scheduler
skip_cleanup=True, # Helpful for debugging
environment={ # Add any needed environment variables
"EXTRA_PIP_PACKAGES": "prefect-dask dask-cloudprovider",
},
# AWS Configuration
region_name="us-east-1", # Your region
vpc="vpc-xxxxx",
cluster="your-ecs-cluster",
subnets=["subnet-xxxxx"],
security_groups=["sg-xxxxx"],
# Logging configuration
cloudwatch_logs_group="/dask/fargate",
cloudwatch_logs_stream_prefix="dask-",
)
@flow(
task_runner=DaskTaskRunner(
cluster_kwargs={"cluster_class": create_fargate_cluster}
)
)
def my_dask_flow():
# Your flow code here
pass
# Add logging configuration at the TOP of your script
import logging
logging.basicConfig(level=<http://logging.INFO|logging.INFO>)
distributed_logger = logging.getLogger("distributed")
distributed_logger.setLevel(logging.DEBUG)
cloudprovider_logger = logging.getLogger("dask_cloudprovider")
cloudprovider_logger.setLevel(logging.DEBUG)
# Add handlers for better console output
handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
distributed_logger.addHandler(handler)
cloudprovider_logger.addHandler(handler)
3. Security Group Requirements
Make sure your security groups allow:
- Inbound TCP 8786 (Dask scheduler)
- Inbound TCP 8787 (Dask dashboard)
- All TCP traffic between workers and scheduler (easiest within the same security group)
- Outbound internet access for pulling Docker images
4. VPC Requirements
- Ensure your VPC has:
- A NAT Gateway (for private subnets)
- An Internet Gateway (for public subnets)
- Proper routing tables
- DNS hostnames enabled
- DNS resolution enabled
5. Troubleshooting Steps
1. Check ECS console for the scheduler task logs
2. Enable detailed logging as shown above
3. Increase timeouts to allow for slower startup
4. Use skip_cleanup=True
to keep resources for investigation
5. Check CloudWatch logs for the scheduler and worker tasks
If you're still seeing issues after implementing these changes, please share:
1. The complete logs from the scheduler task in ECS
2. The security group configurations
3. Whether the VPC is using public or private subnets