<@ULVA73B9P> can you help me in writing a multi-ag...
# ask-marvin
s
@Marvin can you help me in writing a multi-agent workflow with marvin to have a web search and reading different file types for external information
m
thought for 48.6 seconds
I'll help you create a multi-agent workflow that combines web search and file processing capabilities. Here's a complete example that demonstrates how to build this using Prefect and Marvin:
Copy code
python
from prefect import flow, task
from marvin import ai_fn, ai_model
from marvin.tools.search import Search
from marvin.tools.file_reader import FileReader
import json

# Configure specialized agents for different tasks
@ai_model
class WebResearchAgent:
    """Agent specialized in web research and information synthesis."""
    llm_model = "gpt-4"
    temperature = 0.3
    
    @ai_fn
    def search_and_synthesize(self, query: str) -> str:
        """Search the web and synthesize findings."""
        pass

@ai_model
class FileProcessingAgent:
    """Agent specialized in processing and analyzing different file types."""
    llm_model = "gpt-4"
    temperature = 0.2
    
    @ai_fn
    def analyze_file(self, file_content: str, file_type: str) -> dict:
        """Analyze file content and extract key information."""
        pass

@task
def perform_web_research(query: str) -> str:
    """Task to perform web research using the WebResearchAgent."""
    agent = WebResearchAgent()
    search_tool = Search()
    
    # Perform search and get results
    search_results = search_tool.search(query)
    
    # Have the agent synthesize the results
    synthesis = agent.search_and_synthesize(search_results)
    return synthesis

@task
def process_file(file_path: str) -> dict:
    """Task to process different file types using the FileProcessingAgent."""
    agent = FileProcessingAgent()
    file_reader = FileReader()
    
    # Read the file content
    file_content = file_reader.read(file_path)
    file_type = file_path.split('.')[-1]
    
    # Have the agent analyze the content
    analysis = agent.analyze_file(file_content, file_type)
    return analysis

@flow
def research_and_analyze_flow(
    search_query: str,
    file_paths: list[str]
) -> dict:
    """
    Main workflow that coordinates web research and file processing.
    
    Args:
        search_query: The query to research online
        file_paths: List of paths to files that need to be processed
    """
    # Perform web research
    web_results = perform_web_research(search_query)
    
    # Process all files
    file_results = []
    for file_path in file_paths:
        result = process_file(file_path)
        file_results.append(result)
    
    # Combine results
    combined_results = {
        "web_research": web_results,
        "file_analysis": file_results
    }
    
    return combined_results

# Example usage
if __name__ == "__main__":
    query = "Latest developments in AI and data engineering"
    files_to_process = [
        "data/report.pdf",
        "data/analysis.xlsx",
        "data/notes.txt"
    ]
    
    results = research_and_analyze_flow(query, files_to_process)
    print(json.dumps(results, indent=2))
This example demonstrates several key concepts: 1. Specialized Agents: We create two distinct AI agents: - `WebResearchAgent`: Focused on web research and synthesis - `FileProcessingAgent`: Specialized in processing different file types 2. Task Separation: Each major operation is separated into its own task: - `perform_web_research`: Handles web searching and result synthesis - `process_file`: Manages file reading and analysis 3. Flow Orchestration: The main flow
research_and_analyze_flow
coordinates the entire process, managing both web research and file processing tasks. 4. Tool Integration: The workflow uses Marvin's built-in tools: - `Search`: For web searching capabilities - `FileReader`: For handling different file types To use this workflow, you'll need to: 1. Install the required dependencies: ```bash pip
s
@Marvin what are the required dependencies?
m
thought for 45.3 seconds
Here are all the required dependencies you'll need to install to run the multi-agent workflow:
Copy code
bash
# Core requirements
pip install "prefect>=3.0.0"
pip install "marvin>=1.0.0"
pip install "openai>=1.0.0"  # Required for GPT model access

# For web search capabilities
pip install "duckduckgo-search>=3.0.0"  # For web searching
pip install "beautifulsoup4>=4.9.0"     # For parsing web content

# For file processing
pip install "python-magic>=0.4.27"      # For file type detection
pip install "pypdf>=3.0.0"              # For PDF processing
pip install "openpyxl>=3.0.0"           # For Excel files
pip install "pandas>=1.0.0"             # For structured data processing
Additionally, you'll need to: 1. Set up your OpenAI API key:
Copy code
bash
export OPENAI_API_KEY="your-api-key-here"
Or in your Python code:
Copy code
python
import os
os.environ["OPENAI_API_KEY"] = "your-api-key-here"
2. Optional but recommended - create a virtual environment:
Copy code
bash
# Create a virtual environment
python -m venv venv

# Activate it
# On Windows:
venv\Scripts\activate
# On Unix or MacOS:
source venv/bin/activate
Important Notes: 1. Version Compatibility: - The versions specified are minimum versions. You can use newer versions, but be aware of potential breaking changes. - If you encounter version conflicts, you might need to adjust the versions to find a compatible combination. 2. File Type Support: - The dependencies listed above cover common file types (PDF, Excel, text files) - If you need to process additional file types, you might need extra libraries: -
docx2txt
for Word documents -
pillow
for image processing -
python-pptx
for PowerPoint files 3. System Dependencies: -
python-magic
might require additional system libraries on Windows - On Linux, you might need to install `libmagic`:
Copy code
bash
     # Ubuntu/Debian
     sudo apt-get install libmagic1
     
     # CentOS/RHEL
     sudo yum install file-devel
4. Memory Requirements: - When processing large files or running multiple agents simultaneously, ensure your system has adequate RAM - GPT-4 models typically require more memory than GPT-3.5 To verify your installation, you can run this simple test:
Copy code
python
import prefect
import marvin
import openai
import duckduckgo_search
import magic
import pypdf
import pandas

print("All core dependencies successfully imported!")
If you plan to deploy this workflow in a production environment, it's recommended to: 1. Create a
requirements.txt
file:
Copy code
bash
pip freeze > requirements.txt
2. Or use a
pyproject.toml
or
setup.py
for more structured dependency management. Would you like me to provide more specific information about any of these dependencies or help with troubleshooting the installation process?
s
@Marvin do you have any reference to see more examples
m
thought for 52.2 seconds
Here are some valuable examples and references for working with Marvin multi-agent workflows: 1. Official Examples The AI Writer Tutorial (https://github.com/PrefectHQ/marvin/tree/main/docs/guides/multi-step-workflow.mdx) demonstrates a complete multi-agent workflow:
Copy code
python
from marvin import ai_fn, ai_model
from prefect import flow, task

@ai_model
class ResearchAgent:
    llm_model = "gpt-4"
    
    @ai_fn
    def research_topic(self, topic: str) -> str:
        """Research a topic and return key findings."""
        pass

@ai_model
class OutlineAgent:
    llm_model = "gpt-4"
    
    @ai_fn
    def create_outline(self, research: str) -> list[str]:
        """Create an article outline based on research."""
        pass

@ai_model
class WriterAgent:
    llm_model = "gpt-4"
    
    @ai_fn
    def write_section(self, outline: str, research: str) -> str:
        """Write a section of the article."""
        pass

@flow
def article_creation_flow(topic: str):
    # Research phase
    researcher = ResearchAgent()
    research = researcher.research_topic(topic)
    
    # Outline phase
    outliner = OutlineAgent()
    outline = outliner.create_outline(research)
    
    # Writing phase
    writer = WriterAgent()
    sections = []
    for section in outline:
        content = writer.write_section(section, research)
        sections.append(content)
    
    return "\n\n".join(sections)
2. Advanced Web Search Example Here's a more sophisticated web research workflow:
Copy code
python
from marvin import ai_fn, ai_model
from prefect import flow, task
from duckduckgo_search import ddg
from bs4 import BeautifulSoup
import requests
import asyncio

@ai_model
class WebSearchAgent:
    llm_model = "gpt-4"
    temperature = 0.3
    
    @ai_fn
    def generate_search_queries(self, topic: str) -> list[str]:
        """Generate multiple search queries to cover different aspects of the topic."""
        pass
    
    @ai_fn
    def analyze_webpage(self, content: str, url: str) -> dict:
        """Analyze webpage content and extract relevant information."""
        pass
    
    @ai_fn
    def synthesize_findings(self, results: list[dict]) -> str:
        """Synthesize findings from multiple sources into a coherent summary."""
        pass

@task
async def fetch_webpage(url: str) -> str:
    """Fetch and parse webpage content."""
    headers = {'User-Agent': 'Mozilla/5.0'}
    response = requests.get(url, headers=headers)
    soup = BeautifulSoup(response.text, 'html.parser')
    return soup.get_text()

@flow
async def advanced_research_flow(topic: str, max_sources: int = 5):
    agent = WebSearchAgent()
    
    # Generate multiple search queries
    queries = agent.generate_search_queries(topic)
    
    # Perform searches
    all_results = []
    for query in queries:
        search_results = ddg(query, max_results=max_sources)
        
        # Process each search result
        for result in search_results:
            content = await fetch_webpage(result['link'])
            analysis = agent.analyze_webpage(content, result['link'])
            all_results.append(analysis)
    
    # Synthesize findings
    final_summary = agent.synthesize_findings(all_results)
    return final_summary
3. Multi-Format Document Processing Example ```python from marvin import ai_fn, ai_model from prefect import flow, task import pypdf import pandas as pd from typing import Union, Dict @ai_model class DocumentAnalysisAgent: llm_model = "gpt-4" @ai_fn def analyze_
s
@Marvin what does @ai_model do?
m
thought for 69.0 seconds
The
@ai_model
decorator in Marvin is a class decorator that transforms a regular Python class into an AI-powered class with the following key features: 1. Model Configuration
Copy code
python
@ai_model
class ResearchAgent:
    # Configure which LLM to use
    llm_model = "gpt-4"  # or "gpt-3.5-turbo", etc.
    
    # Optional: Configure model parameters
    temperature = 0.7    # Controls randomness (0.0 - 1.0)
    max_tokens = 1000    # Maximum response length
2. State Management: The decorator allows the class to maintain state and context across multiple AI function calls. 3. AI Function Integration: When combined with
@ai_fn
, it enables methods to be executed using the configured LLM:
Copy code
python
@ai_model
class ContentAnalyzer:
    llm_model = "gpt-4"
    
    @ai_fn
    def analyze_text(self, text: str) -> dict:
        """
        The docstring becomes the instruction for the AI.
        The method signature defines input/output types.
        """
        pass  # The actual implementation is handled by the LLM
4. Inheritance Support: AI models can inherit from other AI models:
Copy code
python
@ai_model
class BaseAnalyzer:
    llm_model = "gpt-4"
    
    @ai_fn
    def basic_analysis(self, text: str) -> str:
        """Perform basic text analysis."""
        pass

@ai_model
class SpecializedAnalyzer(BaseAnalyzer):
    @ai_fn
    def detailed_analysis(self, text: str) -> dict:
        """Perform detailed domain-specific analysis."""
        pass
5. Memory and Context:
Copy code
python
@ai_model
class ConversationalAgent:
    llm_model = "gpt-4"
    
    def __init__(self):
        self.conversation_history = []
    
    @ai_fn
    def respond(self, user_input: str) -> str:
        """Respond based on the conversation history."""
        self.conversation_history.append(user_input)
        return  # AI generates response
Key Benefits: 1. Encapsulation: Groups related AI functions and their configuration in a single class 2. Reusability: AI models can be instantiated multiple times with different configurations 3. Type Safety: Enforces input/output types for AI functions 4. State Management: Maintains context across multiple function calls 5. Configuration Management: Centralizes LLM settings for related functions Example of Different Configurations:
Copy code
python
@ai_model
class CreativeWriter:
    llm_model = "gpt-4"
    temperature = 0.9  # Higher temperature for more creative outputs
    
    @ai_fn
    def write_story(self, prompt: str) -> str:
        """Write a creative story based on the prompt."""
        pass

@ai_model
class TechnicalWriter:
    llm_model = "gpt-4"
    temperature = 0.2  # Lower temperature for more focused, precise outputs
    
    @ai_fn
    def write_documentation(self, code: str) -> str:
        """Write technical documentation for the given code."""
        pass
Common Patterns: 1. Task-Specific Agents:
Copy code
python
@ai_model
class ResearchAgent:
    llm_model = "gpt-4"
    
    @ai_fn
    def search(self, query: str) -> list[str]:
        """Generate search queries."""
        pass
    
    @ai_fn
    def synthesize(self, results: list[str]) -> str:
        """Synthesize search results."""
        pass
2. Chained Processing: ```python @ai_model class DocumentProcessor: llm_model = "gpt-4" @ai_fn def extract_topics(self, text: str) -> list[str]: """Extract main topics from text.""" pass @ai_fn def summarize_topic(self, topic
s
@Marvin ImportError: cannot import name 'ai_fn' from 'marvin'
m
thought for 47.4 seconds
The error you're seeing is because the import syntax has changed. Here's how to fix it:
Copy code
python
# Instead of
from marvin import ai_fn, ai_model  # This won't work

# Use this instead
from marvin import fn as ai_fn  # The decorator is now called 'fn'
from marvin import Agent as ai_model  # The base class is now called 'Agent'
Here's a corrected example:
Copy code
python
from marvin import fn as ai_fn
from marvin import Agent
from prefect import flow, task

@Agent
class ResearchAgent:
    model = "openai:gpt-4"  # Specify the model using provider:model_name format
    
    @ai_fn
    def research_topic(self, topic: str) -> str:
        """Research a topic and return key findings."""
        pass

# Example usage
@flow
def research_flow(topic: str):
    agent = ResearchAgent()
    results = agent.research_topic(topic)
    return results
If you're still having issues, make sure you: 1. Have the latest version of Marvin installed:
Copy code
bash
pip install --upgrade marvin
2. Have set up your OpenAI API key:
Copy code
python
import os
os.environ["OPENAI_API_KEY"] = "your-api-key-here"
3. Have all required dependencies:
Copy code
bash
pip install "marvin[all]"  # Installs all optional dependencies
Alternative Import Patterns:
Copy code
python
# Option 1: Import everything
import marvin

@marvin.Agent
class MyAgent:
    model = "openai:gpt-4"
    
    @marvin.fn
    def my_function(self, input: str) -> str:
        """Process the input."""
        pass

# Option 2: Direct imports
from marvin import Agent, fn

@Agent
class MyAgent:
    model = "openai:gpt-4"
    
    @fn
    def my_function(self, input: str) -> str:
        """Process the input."""
        pass
The main changes to note are: -
ai_fn
is now
fn
-
ai_model
is now
Agent
- Model specification uses the format
provider:model_name
- Configuration is more streamlined with environment variables Would you like me to provide a complete working example with these updated imports?
s
@Marvin how should i run this code?
m
thought for 55.7 seconds
Here's a complete guide to running a Marvin workflow: 1. First, create a new project directory and set up a virtual environment:
Copy code
bash
# Create and navigate to project directory
mkdir marvin-workflow
cd marvin-workflow

# Create virtual environment
python -m venv venv

# Activate virtual environment
# On Windows:
venv\Scripts\activate
# On Unix or MacOS:
source venv/bin/activate
2. Install required packages:
Copy code
bash
pip install "marvin[all]"
pip install "prefect>=3.0.0"
3. Create a
.env
file in your project directory:
Copy code
env
OPENAI_API_KEY=your-api-key-here
MARVIN_AGENT_MODEL=openai:gpt-4
4. Create a new file called
workflow.py
with this example code:
Copy code
python
import os
from dotenv import load_dotenv
from marvin import fn
from marvin import Agent
from prefect import flow, task

# Load environment variables
load_dotenv()

@Agent
class ResearchAgent:
    model = "openai:gpt-4"
    
    @fn
    def research_topic(self, topic: str) -> str:
        """Research the given topic and provide detailed findings."""
        pass

@Agent
class SummaryAgent:
    model = "openai:gpt-4"
    
    @fn
    def create_summary(self, research: str) -> str:
        """Create a concise summary of the research findings."""
        pass

@task
def perform_research(topic: str) -> str:
    agent = ResearchAgent()
    return agent.research_topic(topic)

@task
def create_summary(research: str) -> str:
    agent = SummaryAgent()
    return agent.create_summary(research)

@flow(name="Research Flow")
def research_flow(topic: str):
    # Perform the research
    research_results = perform_research(topic)
    
    # Create a summary
    summary = create_summary(research_results)
    
    return {
        "research": research_results,
        "summary": summary
    }

if __name__ == "__main__":
    # Example usage
    topic = "The impact of artificial intelligence on modern workflow automation"
    results = research_flow(topic)
    
    print("\n=== Research Results ===")
    print(results["research"])
    print("\n=== Summary ===")
    print(results["summary"])
5. Run the workflow: There are several ways to run the workflow: A. Direct Python execution:
Copy code
bash
python workflow.py
B. Using Prefect CLI (recommended for production):
Copy code
bash
# Start the Prefect server (in a separate terminal)
prefect server start

# In another terminal, start a worker
prefect worker start -p process

# Deploy your flow
prefect deploy workflow.py:research_flow -n "research-deployment" -p process

# Run the deployment
prefect deployment run research-flow/research-deployment
C. Interactive Python shell:
Copy code
python
>>> from workflow import research_flow
>>> results = research_flow("The future of quantum computing")
>>> print(results["summary"])
6. Monitor your flow: - Open the Prefect UI at http://127.0.0.1:4200 (if using Prefect server) - View flow runs, logs, and results Important Tips: 1. Error Handling:
Copy code
python
from prefect import flow, task
from prefect.utilities.annotations import retry

@task(retries=3, retry_delay_seconds=60)
def perform_research(topic: str) -> str:
    try:
        agent = ResearchAgent()
        return agent.research_topic(topic)
    except Exception as e:
        print(f"Error during research: {e}")
        raise
2. Logging: ```python from prefect import get_run_logger @task def perform_research(topic: str) -> str: logger = get_run_logger() logger.info(f"Starting research on topic: {topic}") agent = ResearchAgent()
s
@Marvin how to use prefect server?
m
thought for 63.9 seconds
Here's a comprehensive guide to using Prefect server: 1. Starting the Server
Copy code
bash
# Start the Prefect server
prefect server start
This will: - Start a local PostgreSQL database - Launch the API server - Start the UI server (typically at http://127.0.0.1:4200) 2. Configure Client Connection
Copy code
bash
# Point your client to the local server
prefect config set PREFECT_API_URL="<http://127.0.0.1:4200/api>"
3. Create a Work Pool
Copy code
bash
# Create a process work pool
prefect work-pool create my-process-pool --type process

# Create a kubernetes work pool (if using k8s)
prefect work-pool create my-k8s-pool --type kubernetes
4. Example Workflow Setup Create a file `example_flow.py`:
Copy code
python
from prefect import flow, task
from datetime import timedelta

@task(retries=3, retry_delay_seconds=60)
def process_data(data: int) -> int:
    return data * 2

@flow(name="Example Flow", description="A simple example flow")
def my_flow(number: int = 1):
    result = process_data(number)
    return result

if __name__ == "__main__":
    my_flow(5)
5. Deploy the Flow
Copy code
python
from prefect.deployments import Deployment
from prefect.server.schemas.schedules import CronSchedule
from example_flow import my_flow

# Create deployment
deployment = my_flow.to_deployment(
    name="example-deployment",
    work_pool_name="my-process-pool",
    schedule=CronSchedule(cron="0 0 * * *"),  # Run daily at midnight
    tags=["example"]
)

# Apply the deployment
deployment.apply()
6. Start a Worker
Copy code
bash
# Start a worker for your work pool
prefect worker start -p "my-process-pool"
7. Monitor and Manage Access the UI at http://127.0.0.1:4200 to: - Monitor flow runs - View logs - Manage deployments - Configure work pools - Set up notifications 8. Common Operations
Copy code
python
from prefect import get_client
from prefect.deployments import run_deployment

async def manage_flows():
    # Create API client
    async with get_client() as client:
        # Get flow runs
        flow_runs = await client.read_flow_runs()
        
        # Start a deployment
        deployment_run = await run_deployment(
            name="example-flow/example-deployment",
            parameters={"number": 10}
        )
        
        # Get deployment details
        deployment = await client.read_deployment("example-flow/example-deployment")
9. Environment Variables Create a
.env
file:
Copy code
env
PREFECT_API_URL="<http://127.0.0.1:4200/api>"
PREFECT_SERVER_API_HOST="0.0.0.0"
PREFECT_SERVER_API_PORT="4200"
10. Production Configuration For production, consider:
Copy code
bash
# Set database URL
prefect config set PREFECT_API_DATABASE_CONNECTION_URL="<postgresql+asyncpg://user:pass@hostname:5432/db>"

# Set API URL
prefect config set PREFECT_API_URL="<http://your-server:4200/api>"
11. Server Management Commands
Copy code
bash
# Check server status
prefect server status

# View server settings
prefect config view

# Clear server database (be careful!)
prefect server database reset

# Start server in development mode
prefect server start --dev
12. Troubleshooting If you encounter issues:
Copy code
bash
# Check server logs
prefect server logs

# Verify configuration
prefect config view

# Reset configuration
prefect config unset PREFECT_API_URL

# Check worker status
prefect worker status
Common Issues and Solutions: - If the UI isn't accessible, check if port 4200 is available - If workers can't connect
s
@Marvin how to define a web search agent?
m
thought for 421.8 seconds
Here's a comprehensive example of how to create a web search agent: 1. First, install the required dependencies:
Copy code
bash
pip install "marvin[all]"
pip install prefect
pip install duckduckgo-search
pip install beautifulsoup4
pip install requests
2. Create a file named `web_search_agent.py`: ```python from typing import List, Dict from marvin import Agent, fn from prefect import flow, task from duckduckgo_search import ddg import requests from bs4 import BeautifulSoup from urllib.parse import urlparse import time @Agent class WebSearchAgent: model = "openai:gpt-4" temperature = 0.3 # Lower temperature for more focused results @fn def generate_search_queries(self, topic: str) -> List[str]: """ Generate a list of specific search queries based on the main topic. The queries should cover different aspects of the topic. Return a list of 3-5 specific search queries. """ pass @fn def analyze_search_results(self, search_results: List[Dict], original_query: str) -> List[Dict]: """ Analyze search results and identify the most relevant ones. Filter out any irrelevant or low-quality results. Args: search_results: List of search results with titles and descriptions original_query: The original search query Returns: List of filtered and ranked results with relevance scores """ pass @fn def synthesize_information(self, webpage_contents: List[Dict], query: str) -> Dict: """ Synthesize information from multiple webpage contents into a coherent summary. Args: webpage_contents: List of dictionaries containing webpage content and metadata query: Original search query Returns: Dictionary containing: - summary: Overall summary of findings - key_points: List of key points - sources: List of sources used """ pass @task(retries=2, retry_delay_seconds=30) def fetch_webpage_content(url: str) -> Dict: """Fetch and extract content from a webpage.""" try: headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' } response = requests.get(url, headers=headers, timeout=10) response.raise_for_status() soup = BeautifulSoup(response.text, 'html.parser') # Remove unwanted elements for element in soup(['script', 'style', 'nav', 'footer', 'iframe']): element.decompose() # Extract main content content = ' '.join(soup.stripped_strings) return { 'url': url, 'domain': urlparse(url).netloc, 'content': content[:8000], # Limit content length 'status': 'success' } except Exception as e: return { 'url': url, 'domain': urlparse(url).netloc, 'content': '', 'status': f'error: {str(e)}' } @task def perform_web_search(query: str, max_results: int = 5) -> List[Dict]: """Perform web search using DuckDuckGo.""" try: results = ddg(query, max_results=max_results) return list(results) except Exception as e: print(f"Search error: {e}") return [] @flow(name="Web Research Flow") def web_research_flow( topic: str, max_results_per_query: int = 3, max_queries: int = 3 ) -> Dict: """ Orchestrates the web research process. Args: topic: The main topic to research max_results_per_query: Maximum number of results to
s
@Marvin is there any specific tools to read images in marvin library? aslo for doing web search and audio files too?
m
thought for 55.9 seconds
Yes, Marvin provides several tools and integrations for handling multimedia content. Here's a comprehensive guide for each type: 1. Images
Copy code
python
from marvin import Agent, fn
from marvin.tools.image import ImageTool
from PIL import Image
import io

@Agent
class ImageAnalysisAgent:
    model = "openai:gpt-4-vision-preview"  # Note: Use vision model for image analysis
    
    @fn
    def analyze_image(self, image_path: str) -> dict:
        """
        Analyze the content of an image and provide detailed description.
        """
        # Load and process image using ImageTool
        image_tool = ImageTool()
        image_data = image_tool.load(image_path)
        return image_data

    @fn
    def generate_image_caption(self, image_path: str) -> str:
        """
        Generate a descriptive caption for the image.
        """
        pass

# Example usage
@flow
def process_image_flow(image_path: str):
    agent = ImageAnalysisAgent()
    analysis = agent.analyze_image(image_path)
    caption = agent.generate_image_caption(image_path)
    return {"analysis": analysis, "caption": caption}
2. Web Search
Copy code
python
from marvin import Agent, fn
from marvin.tools.web import WebSearchTool, WebScrapeTool
from typing import List, Dict

@Agent
class WebResearchAgent:
    model = "openai:gpt-4"
    
    def __init__(self):
        self.search_tool = WebSearchTool()
        self.scrape_tool = WebScrapeTool()
    
    @fn
    def search_web(self, query: str, max_results: int = 5) -> List[Dict]:
        """
        Perform web search and return results.
        """
        results = self.search_tool.search(query, max_results=max_results)
        return results
    
    @fn
    def scrape_webpage(self, url: str) -> Dict:
        """
        Scrape content from a webpage.
        """
        content = self.scrape_tool.scrape(url)
        return content

# Example usage
@flow
def web_research_flow(query: str):
    agent = WebResearchAgent()
    search_results = agent.search_web(query)
    
    detailed_results = []
    for result in search_results:
        content = agent.scrape_webpage(result['url'])
        detailed_results.append(content)
    
    return detailed_results
3. Audio Files
Copy code
python
from marvin import Agent, fn
from marvin.tools.audio import AudioTool
import numpy as np
from typing import Dict

@Agent
class AudioProcessingAgent:
    model = "openai:gpt-4"
    
    def __init__(self):
        self.audio_tool = AudioTool()
    
    @fn
    def transcribe_audio(self, audio_path: str) -> str:
        """
        Transcribe speech from audio file to text.
        """
        return self.audio_tool.transcribe(audio_path)
    
    @fn
    def analyze_audio(self, audio_path: str) -> Dict:
        """
        Analyze audio characteristics and content.
        """
        audio_data = self.audio_tool.load(audio_path)
        return {
            "duration": audio_data.duration,
            "sample_rate": audio_data.sample_rate,
            "channels": audio_data.channels,
            "analysis": "Detailed analysis of audio content"
        }

# Example usage
@flow
def process_audio_flow(audio_path: str):
    agent = AudioProcessingAgent()
    
    # Transcribe audio to text
    transcript = agent.transcribe_audio(audio_path)
    
    # Analyze audio characteristics
    analysis = agent.analyze_audio(audio_path)
    
    return {
        "transcript": transcript,
        "analysis": analysis
    }
4. Combined Multimedia Processing ```python from marvin import Agent, fn
s
@Marvin fix this import from marvin import Agent, fn, run, plan, Thread from marvin.tools.web import WebSearchTool, WebScrapeTool from marvin.tools.image import ImageTool from marvin.tools.audio import AudioTool
m
thought for 121.2 seconds
Here are the correct imports for Marvin's latest version:
Copy code
python
# Core Marvin imports
from marvin import Agent
from marvin.tools import search, web, images, audio
from prefect import flow, task

# If you need specific tools
from marvin.tools.search import DuckDuckGoSearchTool
from marvin.tools.web import WebScraper
from marvin.tools.images import ImageAnalyzer
from marvin.tools.audio import AudioProcessor

# Example implementation
@Agent
class MultiMediaAgent:
    model = "openai:gpt-4"
    
    def __init__(self):
        self.search_tool = DuckDuckGoSearchTool()
        self.web_scraper = WebScraper()
        self.image_analyzer = ImageAnalyzer()
        self.audio_processor = AudioProcessor()
    
    def search_and_analyze(self, query: str):
        # Implement your search and analysis logic here
        results = self.search_tool.search(query)
        return results

@flow
def multimedia_flow(query: str):
    agent = MultiMediaAgent()
    results = agent.search_and_analyze(query)
    return results
Alternatively, for a simpler approach using just the basic tools:
Copy code
python
from marvin import Agent
from prefect import flow, task
import requests
from bs4 import BeautifulSoup
from duckduckgo_search import ddg

@Agent
class SimpleWebSearchAgent:
    model = "openai:gpt-4"
    
    def search_web(self, query: str, max_results: int = 5):
        try:
            results = ddg(query, max_results=max_results)
            return list(results)
        except Exception as e:
            print(f"Search error: {e}")
            return []
    
    def scrape_webpage(self, url: str):
        try:
            response = requests.get(url)
            soup = BeautifulSoup(response.text, 'html.parser')
            return soup.get_text()
        except Exception as e:
            print(f"Scraping error: {e}")
            return ""

@flow
def search_flow(query: str):
    agent = SimpleWebSearchAgent()
    search_results = agent.search_web(query)
    
    all_content = []
    for result in search_results:
        content = agent.scrape_webpage(result['link'])
        all_content.append({
            'url': result['link'],
            'content': content
        })
    
    return all_content

# Usage
if __name__ == "__main__":
    results = search_flow("artificial intelligence latest developments")
    print(results)
For this to work, make sure you have the required dependencies:
Copy code
bash
pip install marvin
pip install prefect
pip install duckduckgo-search
pip install beautifulsoup4
pip install requests
Note: The exact tool names and imports might vary slightly depending on your Marvin version. If you encounter any specific import errors, please let me know the version you're using, and I can provide the exact imports for that version. Would you like me to provide more specific examples for any particular functionality (web search, image processing, or audio processing)?
s
@Marvin from marvin.tools import search, web, images, audio ImportError: cannot import name 'search' from 'marvin.tools'
m
thought for 78.1 seconds
I apologize for the confusion in my previous response. It seems Marvin doesn't have built-in tools for these functionalities. Instead, we'll need to create our own tools using Python libraries. Here's the corrected version:
Copy code
python
from marvin import Agent
from prefect import flow, task
from typing import List, Dict

# For web search
from duckduckgo_search import ddg
import requests
from bs4 import BeautifulSoup

# For image processing (if needed)
from PIL import Image
import io

# For audio processing (if needed)
import librosa

class WebSearchTool:
    def search(self, query: str, max_results: int = 5) -> List[Dict]:
        try:
            results = ddg(query, max_results=max_results)
            return list(results)
        except Exception as e:
            print(f"Search error: {e}")
            return []

    def scrape(self, url: str) -> str:
        try:
            headers = {
                'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
            }
            response = requests.get(url, headers=headers, timeout=10)
            soup = BeautifulSoup(response.text, 'html.parser')
            return soup.get_text()
        except Exception as e:
            print(f"Scraping error: {e}")
            return ""

class ImageTool:
    def load_image(self, image_path: str):
        try:
            return Image.open(image_path)
        except Exception as e:
            print(f"Image loading error: {e}")
            return None

    def analyze_image(self, image):
        # Add your image analysis logic here
        return {
            "size": image.size,
            "mode": image.mode,
            "format": image.format
        }

class AudioTool:
    def load_audio(self, audio_path: str):
        try:
            return librosa.load(audio_path)
        except Exception as e:
            print(f"Audio loading error: {e}")
            return None

    def analyze_audio(self, audio_data):
        # Add your audio analysis logic here
        return {
            "duration": librosa.get_duration(y=audio_data[0], sr=audio_data[1]),
            "sample_rate": audio_data[1]
        }

@Agent
class MultiMediaAgent:
    model = "openai:gpt-4"
    
    def __init__(self):
        self.web_tool = WebSearchTool()
        self.image_tool = ImageTool()
        self.audio_tool = AudioTool()
    
    def search_and_analyze(self, query: str) -> Dict:
        """
        Perform web search and analysis.
        """
        search_results = self.web_tool.search(query)
        analyzed_results = []
        
        for result in search_results:
            content = self.web_tool.scrape(result['link'])
            analyzed_results.append({
                'url': result['link'],
                'title': result['title'],
                'content': content
            })
        
        return analyzed_results

@flow
def multimedia_research_flow(
    query: str,
    max_results: int = 5
) -> Dict:
    """
    Execute a multimedia research flow.
    
    Args:
        query: Search query
        max_results: Maximum number of results to return
    """
    agent = MultiMediaAgent()
    results = agent.search_and_analyze(query)
    return results

# Example usage
if __name__ == "__main__":
    # Install required dependencies first:
    # pip install marvin prefect duckduckgo-search beautifulsoup4 requests Pillow librosa

    query = "Latest developments in artificial intelligence"
    results = multimedia_research_flow(query)
    print(results)
To use this code, you'll need to install the required dependencies: ```bash # Core requirements pip install marvin pip install prefect # For web search and scraping pip install duckduckgo-search
s
@Marvin is there a way that we can use an smolagent agent in the marvin flow? or if marvin web search has a tool like visit web-page tool?
m
thought for 75.7 seconds
Yes, you can integrate SmolAgent with a Marvin flow! Here's how to do it: 1. First, install the required packages:
Copy code
bash
pip install marvin prefect smol-agent selenium webdriver-manager
2. Here's an example that combines SmolAgent's web browsing capabilities with Marvin's agent framework:
Copy code
python
from marvin import Agent
from prefect import flow, task
from smol_agent.agent import SmolAgent
from smol_agent.tools import WebBrowserTool
from typing import Dict, List
import asyncio

class WebBrowserAgent:
    def __init__(self):
        self.browser_tool = WebBrowserTool()
        self.smol_agent = SmolAgent(
            tools=[self.browser_tool],
            llm_name="gpt-4"
        )
    
    async def visit_webpage(self, url: str) -> str:
        """Visit a webpage and extract its content using SmolAgent."""
        prompt = f"""
        Visit this webpage: {url}
        Extract the main content and any relevant information.
        Ignore ads and navigation elements.
        """
        result = await self.smol_agent.run(prompt)
        return result
    
    async def search_and_browse(self, query: str) -> str:
        """Perform a search and browse results using SmolAgent."""
        prompt = f"""
        Search for: {query}
        Visit the most relevant result and extract key information.
        """
        result = await self.smol_agent.run(prompt)
        return result

@Agent
class MarvinWebResearchAgent:
    model = "openai:gpt-4"
    
    def __init__(self):
        self.web_browser = WebBrowserAgent()
    
    async def research_topic(self, topic: str) -> Dict:
        """
        Research a topic using SmolAgent for web browsing and Marvin for analysis.
        """
        # Use SmolAgent to gather information
        raw_info = await self.web_browser.search_and_browse(topic)
        
        # Use Marvin to analyze and structure the information
        analysis = {
            "topic": topic,
            "raw_information": raw_info,
            "key_points": "Extract key points here",
            "summary": "Provide summary here"
        }
        
        return analysis

@task
async def perform_research(topic: str) -> Dict:
    agent = MarvinWebResearchAgent()
    return await agent.research_topic(topic)

@flow
def web_research_flow(topic: str) -> Dict:
    """
    Orchestrate web research using both SmolAgent and Marvin.
    """
    return asyncio.run(perform_research(topic))

# Example with specific webpage visits
class DetailedWebResearchAgent:
    def __init__(self):
        self.web_browser = WebBrowserAgent()
        
    async def analyze_multiple_pages(self, urls: List[str]) -> List[Dict]:
        """
        Visit and analyze multiple web pages.
        """
        results = []
        for url in urls:
            content = await self.web_browser.visit_webpage(url)
            results.append({
                "url": url,
                "content": content
            })
        return results

@flow
def detailed_research_flow(urls: List[str]) -> List[Dict]:
    """
    Analyze specific web pages using SmolAgent's browsing capabilities.
    """
    agent = DetailedWebResearchAgent()
    return asyncio.run(agent.analyze_multiple_pages(urls))

# Example usage
if __name__ == "__main__":
    # Example 1: General topic research
    topic = "Latest developments in quantum computing"
    results = web_research_flow(topic)
    print("Topic Research Results:", results)
    
    # Example 2: Specific webpage analysis
    urls = [
        "<https://example.com/page1>",
        "<https://example.com/page2>"
    ]
    page_analyses = detailed_research_flow(urls)
    print("Webpage Analyses:", page_analyses)
3. For more advanced web interactions, you can extend the SmolAgent capabilities: ```python
s
@Marvin while trying to install smolagent, x No solution found when resolving dependencies: `-> Because smol-agent was not found in the package registry and you require smol-agent, we can conclude that your requirements are unsatisfiable.
m
thought for 52.7 seconds
I apologize for the confusion in my previous response. It seems I made a mistake about the SmolAgent package. Instead, let's use a different approach with Selenium for web browsing capabilities in Marvin. Here's the corrected version:
Copy code
python
from marvin import Agent
from prefect import flow, task
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.chrome.options import Options
from webdriver_manager.chrome import ChromeDriverManager
from bs4 import BeautifulSoup
from typing import Dict, List
import time

class WebBrowserTool:
    def __init__(self):
        # Set up Chrome options
        self.chrome_options = Options()
        self.chrome_options.add_argument('--headless')  # Run in headless mode
        self.chrome_options.add_argument('--no-sandbox')
        self.chrome_options.add_argument('--disable-dev-shm-usage')
        
        # Initialize the webdriver
        self.driver = webdriver.Chrome(
            service=Service(ChromeDriverManager().install()),
            options=self.chrome_options
        )
    
    def visit_webpage(self, url: str) -> str:
        """Visit a webpage and extract its content."""
        try:
            self.driver.get(url)
            # Wait for dynamic content to load
            time.sleep(2)
            
            # Get the page source and parse with BeautifulSoup
            soup = BeautifulSoup(self.driver.page_source, 'html.parser')
            
            # Remove unwanted elements
            for element in soup(['script', 'style', 'nav', 'footer']):
                element.decompose()
            
            return soup.get_text(strip=True)
        except Exception as e:
            print(f"Error visiting webpage: {e}")
            return ""
    
    def __del__(self):
        """Clean up the webdriver when done."""
        if hasattr(self, 'driver'):
            self.driver.quit()

@Agent
class WebResearchAgent:
    model = "openai:gpt-4"
    
    def __init__(self):
        self.browser = WebBrowserTool()
    
    def analyze_webpage(self, url: str) -> Dict:
        """
        Visit and analyze a webpage using Marvin's capabilities.
        """
        content = self.browser.visit_webpage(url)
        
        # Use the agent to analyze the content
        analysis = {
            "url": url,
            "content": content,
            "summary": "Summary will be generated here",
            "key_points": ["Key points will be extracted here"]
        }
        
        return analysis

@flow
def web_research_flow(urls: List[str]) -> List[Dict]:
    """
    Research flow that visits and analyzes multiple webpages.
    """
    agent = WebResearchAgent()
    results = []
    
    for url in urls:
        analysis = agent.analyze_webpage(url)
        results.append(analysis)
    
    return results

# Example usage
if __name__ == "__main__":
    # First, install required dependencies:
    # pip install marvin prefect selenium webdriver-manager beautifulsoup4
    
    urls = [
        "<https://example.com/page1>",
        "<https://example.com/page2>"
    ]
    
    results = web_research_flow(urls)
    print("Research Results:", results)
To use this code, you'll need to install these dependencies:
Copy code
bash
pip install marvin
pip install prefect
pip install selenium
pip install webdriver-manager
pip install beautifulsoup4
This solution provides: 1. A WebBrowserTool that uses Selenium for actual web browsing 2. Integration with Marvin's Agent for content analysis 3. A Prefect flow for orchestrating the research process The advantages of this approach: - Can handle dynamic JavaScript-rendered content - More reliable than simple HTTP requests - Can be extended to handle more complex web interactions - Integrates well with Marvin's AI capabilities Would you like me to explain any part of this implementation in more detail or show how to extend it for specific use cases?
s
@Marvin in my code i am getting from marvin import ai_fn ImportError: cannot import name 'ai_fn' from 'marvin'
m
thought for 10.3 seconds
Ah, I see the issue. The error you're encountering suggests you might be using an outdated version of Marvin. The
ai_fn
decorator was part of an older version of Marvin, but the import structure has changed. Here's how to fix it: 1. First, make sure you have the latest version of Marvin installed:
Copy code
bash
pip install -U marvin
2. Then, update your import statement to:
Copy code
python
from marvin.components import ai_fn
If you're still having issues after that, you might want to check: 1. Your Python environment is clean (no conflicting packages) 2. You have the correct dependencies installed 3. Your OpenAI API key is properly configured Also, if you're following any tutorials or documentation, make sure you're looking at the most current version, as the Marvin API has evolved over time. If you continue to have issues, please let me know what version of Marvin you're using (you can check with
pip show marvin
), and I can provide more specific guidance.
s
@Marvin Name: marvin Version: 3.1.1
m
thought for 7.0 seconds
Ah, that explains it. In Marvin 3.x, the import structure is different from what you're trying to use. The
ai_fn
decorator has been replaced with a new pattern. Here's how to use function creation in Marvin 3.x:
Copy code
python
from marvin import fn

# Example usage:
@fn
def your_function(input: str) -> str:
    """Your function description here"""
    return NotImplemented
The change from
ai_fn
to
fn
is part of Marvin's 3.0 release which included significant API changes to make the library more intuitive and consistent. If you're following any tutorials or documentation that uses
ai_fn
, you're likely looking at outdated material for Marvin 1.x or 2.x. I'd recommend referring to the current documentation at: - https://www.askmarvin.ai/components/functions/ - https://www.askmarvin.ai/welcome/quickstart/ Let me know if you need any clarification on using the new
fn
decorator!
s
@Marvin how to read excel datasets and provide the information in the spreadsheet to the agent?
m
thought for 23.4 seconds
Ah, let me provide you with a practical solution for handling Excel data in Prefect flows. The most straightforward approach is to use pandas, which integrates seamlessly with Prefect. Here's how you can do it: 1. First, make sure you have the required dependencies installed:
Copy code
bash
pip install pandas openpyxl
2. Here's a basic example of a Prefect flow that reads an Excel file:
Copy code
python
from prefect import flow, task
import pandas as pd

@task
def read_excel_data(file_path: str) -> pd.DataFrame:
    return pd.read_excel(file_path)

@task
def process_data(df: pd.DataFrame):
    # Add your data processing logic here
    return df

@flow
def excel_processing_flow(file_path: str):
    # Read the Excel file
    df = read_excel_data(file_path)
    
    # Process the data
    processed_data = process_data(df)
    
    return processed_data

# Run the flow
if __name__ == "__main__":
    result = excel_processing_flow("path/to/your/excel_file.xlsx")
Some additional tips for working with Excel data: 1. Specific Sheets: If you need to read a specific sheet:
Copy code
python
@task
def read_specific_sheet(file_path: str, sheet_name: str) -> pd.DataFrame:
    return pd.read_excel(file_path, sheet_name=sheet_name)
2. Multiple Sheets: To read all sheets:
Copy code
python
@task
def read_all_sheets(file_path: str) -> dict:
    return pd.read_excel(file_path, sheet_name=None)
3. Error Handling: It's good practice to add error handling:
Copy code
python
from prefect import flow, task
import pandas as pd

@task
def read_excel_data(file_path: str) -> pd.DataFrame:
    try:
        return pd.read_excel(file_path)
    except FileNotFoundError:
        raise ValueError(f"Excel file not found at: {file_path}")
    except Exception as e:
        raise ValueError(f"Error reading Excel file: {str(e)}")
4. Large Files: For large Excel files, you might want to read them in chunks:
Copy code
python
@task
def read_large_excel(file_path: str, chunksize: int = 1000):
    for chunk in pd.read_excel(file_path, chunksize=chunksize):
        # Process each chunk
        yield chunk
Remember that pandas provides many options for reading Excel files, such as: - Specifying ranges using
usecols
and
skiprows
- Handling date formats with
parse_dates
- Managing missing values with
na_values
Example with more options:
Copy code
python
@task
def read_excel_advanced(file_path: str) -> pd.DataFrame:
    return pd.read_excel(
        file_path,
        sheet_name='Sheet1',
        usecols='A:D',  # Specify columns to read
        skiprows=1,     # Skip first row
        na_values=['NA', 'missing'],  # Custom NA values
        parse_dates=['Date_Column']  # Parse date columns
    )
The data read from Excel will be available as a pandas DataFrame within your flow, which you can then process, transform, or analyze as needed. You can combine this with other Prefect features like: - Logging the shape of your data - Adding retries for network-based Excel files - Using parameters to make the file path configurable - Implementing data validation tasks This approach gives you a robust way to incorporate Excel data processing into your Prefect workflows while maintaining all the benefits of Prefect's task and flow management capabilities.
s
@Marvin what does this decorator @ fn show? how does it work?
m
thought for 30.0 seconds
I notice there might be some ambiguity here. Could you provide more context about where you're seeing this
@fn
decorator? Are you seeing it in some Prefect code, or is it from a different library? Also, could you share a code snippet showing how it's being used? This would help me give you a more accurate and helpful answer. The most common decorators you'll see in Prefect are
@flow
and
@task
, but I don't recognize
@fn
as a standard Prefect decorator. With more context, I can provide a much more specific and useful explanation.
s
@Marvin like in this code: @fn def orchestration_agent(task: dict, context: dict) -> str: """ Use LLM to determine which agent should process the task based on the instructions. Args: - task: The task object containing instructions. - context: The context, including the question and other relevant details. Returns: - The result of executing the task by the selected agent. """ instructions = task["instructions"].lower() # Ask the LLM to decide which agent should process the task agent_decision = marvin.run( f"Based on the following task instructions: '{instructions}', which agent should handle this task?", agents=[answer_agent], # You can use the answer agent or any LLM-based agent context=context ) # The LLM decision will be the name of the agent, so we map that decision to the actual agent agent_map = { "search": search_agent, "file": file_processing_agent, "arxiv": arxiv_agent, "image": gpt_image_agent, "audio": audio_transcription_agent, "youtube": youtube_download_agent } # Determine the agent to use based on the LLM decision chosen_agent = None for agent_name, agent in agent_map.items(): if agent_name in agent_decision.lower(): chosen_agent = agent break if not chosen_agent: # Default to the answer agent if no match was found chosen_agent = answer_agent # Run the task with the selected agent result = marvin.run(task["instructions"], agents=[chosen_agent], context=context) return result
m
thought for 8.4 seconds
Ah, now I see the context. This appears to be from a Marvin AI framework implementation (not related to my persona - just a coincidence!), not from Prefect. In this context,
@fn
is likely a decorator from the Marvin framework that marks this function as a callable unit within their system. It's being used to decorate an orchestration function that routes tasks to different AI agents based on their type. Let me break down what's happening in this code: 1. The
@fn
decorator marks this Python function as a special Marvin function that can be integrated into their workflow system 2. The decorated function (
orchestration_agent
) takes two parameters: - `task`: A dictionary containing instructions - `context`: A dictionary with the question and other relevant details 3. The function then: - Uses Marvin's LLM to decide which specialized agent should handle the task - Maps the LLM's decision to actual agent implementations - Executes the chosen agent with the task instructions - Returns the result This pattern is common in AI orchestration frameworks where you need to mark certain functions as special handlers or processors. The decorator likely adds some functionality like: - Error handling - Logging - Input validation - Context management - Integration with the broader Marvin framework However, since this isn't Prefect code, I'd recommend checking the Marvin framework's documentation for the exact specifics of what their
@fn
decorator provides. If you're working with Prefect, you'd use
@flow
or
@task
decorators instead, which serve similar but Prefect-specific purposes.
s
@Marvin i am getting jinja2.exceptions.UndefinedError: 'function object' has no attribute 'id' error
m
thought for 37.0 seconds
To help you resolve this error, I'll need a bit more context about your specific use case. Could you share: 1. The code that's generating this error 2. Where you're using Jinja2 templating (is it in a deployment configuration, notification, or somewhere else?) This error typically occurs when you're trying to access an
.id
attribute on a function object where Jinja2 is expecting a different type of object. Common scenarios where this might happen include: 1. Passing a raw function instead of a flow/task object to a template 2. Incorrect template variable references 3. Missing decorators that would transform the function into the expected object type Without seeing your code, here are some general tips to check: 1. If you're working with flows, make sure they're properly decorated with
@flow
2. If you're using templates in notifications or webhooks, verify that you're referencing the correct context variables 3. Check that any functions you're passing to templates are properly wrapped or transformed into the expected object type If you could share the relevant code snippets, I can provide more specific guidance on fixing the issue.
s
@Marvin can i upload a code file to you?
m
thought for 4.6 seconds
I apologize, but I don't have the direct capability to receive file uploads. However, there are several good ways to share code with me: 1. You can paste the code directly into our conversation 2. You can share relevant snippets of the code that you think are causing the issue 3. If the code is on GitHub, you can share the repository link or specific file link For your Jinja2 error, it would be particularly helpful to see: - The code where the error is occurring - The template that's being used - How you're passing data to the template Just paste any of these directly into our conversation, and I'll help you diagnose and fix the issue.
s
@Marvin import marvin import time import os from pydantic import BaseModel import requests from bs4 import BeautifulSoup from duckduckgo_search import DDGS from PyPDF2 import PdfReader import pandas as pd from PIL import Image from mutagen.mp3 import MP3 import zipfile from pytube import YouTube import arxiv from Bio.PDB import PDBParser import openai import base64 from langchain_community.tools.arxiv.tool import ArxivQueryRun, ArxivInput from langchain.utilities.arxiv import ArxivAPIWrapper from serpapi import GoogleSearch from marvin import fn from datasets import load_dataset from huggingface_hub import login from dotenv import load_dotenv load_dotenv() hftoken = os.getenv("HF_Key") try: login(hftoken) print("Login successful") except Exception as e: print(f"Login failed: {e}") # Load dataset try: dataset = load_dataset('gaia-benchmark/GAIA', '2023_all', split='validation') except Exception as e: print(f"Dataset loading failed: {e}") # Setup API keys and libraries openai_api_key = os.getenv("OPENAI_API_KEY") client = openai.Client(api_key=openai_api_key) class QA(BaseModel): Answer: str # Utility Functions (same as before) def scrape_url(url: str) -> str: try: headers = {'User-Agent': 'Mozilla/5.0'} res = requests.get(url, headers=headers, timeout=10) soup = BeautifulSoup(res.text, 'html.parser') lines = [line.strip() for line in soup.get_text(separator="\n").splitlines() if line.strip()] return "\n".join(lines[:20]) except Exception as e: return f"[Error scraping {url}]: {e}" def duckduckgo_web_search(query: str, max_results: int = 5) -> list[str]: results = [] with DDGS() as ddgs: for r in ddgs.text(query, max_results=max_results): url = r.get("href") or r.get("url") if not url: continue text = scrape_url(url) results.append(f"🔗 {url}\n{text[:500]}...") time.sleep(1) return results # Functions for GPT-4o and other tools (Image description, transcription, etc.) def get_image_description_gpt4o(image_path: str, Q: str) -> str: try: with open(image_path, "rb") as image_file: image_data = image_file.read() response = client.chat.completions.create( model="gpt-4o", messages=[{ "role": "user", "content": [{"type": "text", "text": f"Describe the image with information related to {Q}"}], "image_url": {"url": f"data:image/jpeg;base64,{base64.b64encode(image_data).decode('utf-8')}"} }] ) return response.choices[0].message.content except FileNotFoundError: return f"Error: Image file not found at {image_path}" except Exception as e: return f"Error querying GPT-4o: {e}" def transcribe_audio_gpt4o(audio_path: str, Q: str) -> str: try: with open(audio_path, "rb") as audio_file: transcript = client.audio.transcriptions.create(model="whisper-1", file=audio_file) return transcript.text except FileNotFoundError: return f"Error: Audio file not found at {audio_path}" except Exception as e: return f"Error querying GPT-4o for transcription: {e}" # File analysis function def analyze_file(path: str, Q: str) -> str: ext = os.path.splitext(path)[1].lower() try: if ext == ".pdf": text = "\n".join(PdfReader(path).pages[i].extract_text() or "" for i in range(len(PdfReader(path).pages))) return text elif ext in (".xls", ".xlsx"): df = pd.read_excel(path, engine='openpyxl') return df elif ext in (".png", ".jpg", ".jpeg"): return get_image_description_gpt4o(path, Q) elif ext == ".mp3": return transcribe_audio_gpt4o(path, Q) elif ext == ".zip": with zipfile.ZipFile(path) as z: return "ZIP contents: " + ", ".join(z.namelist()) elif ext == ".pdb": parser = PDBParser(QUIET=True) atoms = list(parser.get_structure("pdb_structure", path).get_atoms()) return atoms else: return f"Unsupported file extension: {ext}" except Exception as e: return f"Error processing {path}: {e}" def serpapi_search(query: str, max_results: int = 5) -> list[str]: api_key = os.getenv('SERPAPI_KEY') params = { "q": query, "api_key": api_key, "num": max_results, } results = [] try: search = GoogleSearch(params) results_json = search.get_dict() for item in results_json.get("organic_results", []): url = item["link"] text = scrape_url(url) results.append(f"🔗 {url}\n{text[:500]}...") except Exception as e: results.append(f"Error with SerpApi: {e}") return results # Arxiv search and download def search_and_download_arxiv_pdf(query: str, save_dir="downloads") -> str: client = arxiv.Client() search = arxiv.Search(query=query, max_results=1) os.makedirs(save_dir, exist_ok=True) for result in client.results(search): filename = result.pdf_url.split("/")[-1] + ".pdf" filepath = os.path.join(save_dir, filename) result.download_pdf(dirpath=save_dir, filename=filename) return filepath return "" def download_from_youtube(url: str) -> str: try: yt = YouTube(url) path = yt.streams.filter(only_audio=True).first().download(output_path="downloads") return f"Downloaded YouTube audio to {path}" except Exception as e: return f"Error downloading from YouTube: {e}" arxiv = ArxivAPIWrapper() def search_arxiv_with_langchain(query: str, max_results=1) -> list[str]: """Search arXiv using LangChain's ArxivAPIWrapper and return text summaries.""" docs = arxiv.run(query) return [docs] if isinstance(docs, str) else docs[:max_results] # Specialized Agent Functions (based on instruction) @fn def search_function(query: str) -> list[str]: return serpapi_search(query, max_results=5) @fn def file_analysis_function(path: str, Q: str) -> str: return analyze_file(path, Q) @fn def arxiv_search_function(query: str) -> list[str]: return search_arxiv_with_langchain(query) @fn def gpt_4o_image_function(image_path: str, Q: str) -> str: return get_image_description_gpt4o(image_path, Q) @fn def transcribe_audio_function(audio_path: str, Q: str) -> str: return transcribe_audio_gpt4o(audio_path, Q) @fn def youtube_download_function(url: str) -> str: return download_from_youtube(url) # Specialized Agents search_agent = marvin.Agent(name="web-search", instructions="You are an expert web researcher. Use web search results to find relevant info and cite them.", tools=[search_function]) file_processing_agent = marvin.Agent(name="file-processing", instructions="Process and analyze the file to extract relevant information.", tools=[file_analysis_function]) arxiv_agent = marvin.Agent(name="arxiv-search", instructions="Search for papers or relevant articles on arXiv.", tools=[arxiv_search_function]) gpt_image_agent = marvin.Agent(name="gpt-image", instructions="Process and describe the image with GPT-4o.", tools=[gpt_4o_image_function]) audio_transcription_agent = marvin.Agent(name="audio-transcription", instructions="Transcribe audio files using GPT-4o.", tools=[transcribe_audio_function]) youtube_download_agent = marvin.Agent(name="youtube-download", instructions="Download audio or video content from YouTube.", tools=[youtube_download_function]) answer_agent = marvin.Agent(name="answer-generator", instructions="Generate a final, clear answer to the user's question using gathered info.") # Orchestration Agent @fn def orchestration_agent(task: dict, context: dict) -> str: instructions = task["instructions"].lower() agent_decision = marvin.run( f"Based on the following task instructions: '{instructions}', which agent should handle this task?", agents=[answer_agent], context=context ) agent_map = { "search": search_agent, "file": file_processing_agent, "arxiv": arxiv_agent, "image": gpt_image_agent, "audio": audio_transcription_agent, "youtube": youtube_download_agent } chosen_agent = None for agent_name, agent in agent_map.items(): if agent_name in agent_decision.lower(): chosen_agent = agent break if not chosen_agent: chosen_agent = answer_agent result = marvin.run(task["instructions"], agents=[chosen_agent], context=context) return result # Main Workflow if name == "__main__": with marvin.Thread() as thread: question = dataset[20]['Question'] fileinfo = dataset[20]['file_path'] Q = question + fileinfo plan = marvin.plan(Q) for i, task in enumerate(plan, 1): print(f"{i}. {task.instructions}") outputs = [] for task in plan: print(f"\nExecuting task: {task.instructions}") res = marvin.run( task.instructions, agents=[orchestration_agent], # Orchestration agent queries the LLM for task routing context={"question": question} ) outputs.append(res) final = marvin.run( "Using the gathered outputs, write the final answer.", agents=[answer_agent], result_type=QA, context={"question": question, "info": outputs} ) print("\n💡 Final Answer:\n") print(final.Answer)
m
Your message was too long, here's your message at the allowed limit: import marvin import time import os from pydantic import BaseModel import requests from bs4 import BeautifulSoup from duckduckgo_search import DDGS from PyPDF2 import PdfReader import pandas as pd from PIL import Image from mutagen mp3 import MP3 import zipfile from pytube import YouTube import arxiv from Bio PDB import PDBParser import openai import base64 from langchain_community tools arxiv tool import ArxivQueryRun ArxivInput from langchain utilities arxiv import ArxivAPIWrapper from serpapi import GoogleSearch from marvin import fn from datasets import load_dataset from huggingface_hub import login from dotenv import load_dotenv load_dotenv() hftoken = os getenv( HF_Key ) try login(hftoken) print( Login successful ) except Exception as e print(f Login failed {e} ) # Load dataset try dataset = load_dataset('gaia-benchmark/GAIA' '2023_all' split='validation') except Exception as e print(f Dataset loading failed {e} ) # Setup API keys and libraries openai_api_key = os getenv( OPENAI_API_KEY ) client = openai Client(api_key=openai_api_key) class QA(BaseModel) Answer str # Utility Functions (same as before) def scrape_url(url str) -> str try headers = {'User-Agent' 'Mozilla/5 0'} res = requests get(url headers=headers timeout=10) soup = BeautifulSoup(res text 'html parser') lines = [line strip() for line in soup get_text(separator= \n ) splitlines() if line strip()] return \n join(lines[ 20]) except Exception as e return f [Error scraping {url}] {e} def duckduckgo_web_search(query str max_results int = 5) -> list[str] results = [] with DDGS() as ddgs for r in ddgs text(query max_results=max_results) url = r get( href ) or r get( url ) if not url continue text = scrape_url(url) results append(f link {url}\n{text[ 500]} ) time sleep(1) return results # Functions for GPT-4o and other tools (Image description transcription etc ) def get_image_description_gpt4o(image_path str Q str) -> str try with open(image_path rb ) as image_file image_data = image_file read() response = client chat completions create( model= gpt-4o messages=[{ role user content [{ type text text f Describe the image with information related to {Q} }] image_url { url f data image/jpeg;base64 {base64 b64encode(image_data) decode('utf-8')} } }] ) return response choices[0] message content except FileNotFoundError return f Error Image file not found at {image_path} except Exception as e return f Error querying GPT-4o {e} def transcribe_audio_gpt4o(audio_path str Q str) -> str try with open(audio_path rb ) as audio_file transcript = client audio transcriptions create(model= whisper-1 file=audio_file) return transcript text except FileNotFoundError return f Error Audio file not found at {audio_path} except Exception as e return f Error querying GPT-4o for transcription {e} # File analysis function def analyze_file(path str Q str) -> str ext = os path splitext(path)[1] lower() try if ext == pdf text = \n join(PdfReader(path) pages[i] extract_text() or for i in range(len(PdfReader(path) pages))) return text elif ext in ( xls xlsx ) df = pd read_excel(path engine='openpyxl') return df elif ext in ( png jpg jpeg ) return get_image_description_gpt4o(path Q) elif ext == mp3 return transcribe_audio_gpt4o(path Q) elif ext == zip with zipfile ZipFile(path) as z return ZIP contents + join(z namelist()) elif ext == pdb parser = PDBParser(QUIET=True) atoms = list(parser get_structure( pdb_structure path) get_atoms()) return atoms else return
s
@Marvin i have some functions. here is the agentic code: @fn def search_function(query: str) -> list[str]: return serpapi_search(query, max_results=5) @fn def file_analysis_function(path: str, Q: str) -> str: return analyze_file(path, Q) @fn def arxiv_search_function(query: str) -> list[str]: return search_arxiv_with_langchain(query) @fn def gpt_4o_image_function(image_path: str, Q: str) -> str: return get_image_description_gpt4o(image_path, Q) @fn def transcribe_audio_function(audio_path: str, Q: str) -> str: return transcribe_audio_gpt4o(audio_path, Q) @fn def youtube_download_function(url: str) -> str: return download_from_youtube(url) # Specialized Agents search_agent = marvin.Agent(name="web-search", instructions="You are an expert web researcher. Use web search results to find relevant info and cite them.", tools=[search_function]) file_processing_agent = marvin.Agent(name="file-processing", instructions="Process and analyze the file to extract relevant information.", tools=[file_analysis_function]) arxiv_agent = marvin.Agent(name="arxiv-search", instructions="Search for papers or relevant articles on arXiv.", tools=[arxiv_search_function]) gpt_image_agent = marvin.Agent(name="gpt-image", instructions="Process and describe the image with GPT-4o.", tools=[gpt_4o_image_function]) audio_transcription_agent = marvin.Agent(name="audio-transcription", instructions="Transcribe audio files using GPT-4o.", tools=[transcribe_audio_function]) youtube_download_agent = marvin.Agent(name="youtube-download", instructions="Download audio or video content from YouTube.", tools=[youtube_download_function]) answer_agent = marvin.Agent(name="answer-generator", instructions="Generate a final, clear answer to the user's question using gathered info.") # Orchestration Agent @fn def orchestration_agent(task: dict, context: dict) -> str: instructions = task["instructions"].lower() agent_decision = marvin.run( f"Based on the following task instructions: '{instructions}', which agent should handle this task?", agents=[answer_agent], context=context ) agent_map = { "search": search_agent, "file": file_processing_agent, "arxiv": arxiv_agent, "image": gpt_image_agent, "audio": audio_transcription_agent, "youtube": youtube_download_agent } chosen_agent = None for agent_name, agent in agent_map.items(): if agent_name in agent_decision.lower(): chosen_agent = agent break if not chosen_agent: chosen_agent = answer_agent result = marvin.run(task["instructions"], agents=[chosen_agent], context=context) return result # Main Workflow if name == "__main__": with marvin.Thread() as thread: question = dataset[20]['Question'] fileinfo = dataset[20]['file_path'] Q = question + fileinfo plan = marvin.plan(Q) for i, task in enumerate(plan, 1): print(f"{i}. {task.instructions}") outputs = [] for task in plan: print(f"\nExecuting task: {task.instructions}") res = marvin.run( task.instructions, agents=[orchestration_agent], # Orchestration agent queries the LLM for task routing context={"question": question} ) outputs.append(res) final = marvin.run( "Using the gathered outputs, write the final answer.", agents=[answer_agent], result_type=QA, context={"question": question, "info": outputs} ) print("\n💡 Final Answer:\n") print(final.Answer)
m
thought for 13.3 seconds
I see you're working with the Marvin AI framework and have a sophisticated agent orchestration system. The Jinja2 error you're encountering likely comes from how the results are being templated or displayed. Given your code, there are a few potential sources for the 'function object has no attribute id' error: 1. The
@fn
decorator might not be properly transforming the functions into objects with the required attributes that Jinja2 is expecting 2. The
marvin.run()
results might be getting passed to a template that expects an object with an
id
attribute 3. The
QA
result type (which isn't defined in the shared code) might be expecting certain attributes Here are some potential fixes: 1. First, make sure you have the correct imports and decorators:
Copy code
python
from marvin import fn  # Make sure you're importing the decorator correctly

# Then use it as
@fn
def search_function(query: str) -> list[str]:
    ...
2. Define your QA type properly (if you haven't already):
Copy code
python
from dataclasses import dataclass

@dataclass
class QA:
    Answer: str
    # Add any other fields you need
3. If you're using templates anywhere, make sure you're passing the correct object structure. For example:
Copy code
python
# Instead of passing the function directly
context = {"func": search_function}  # Wrong

# Pass the result or a proper object
context = {"result": search_function(query)}  # Better
Could you also share: 1. Where exactly (which line) the error is occurring? 2. The definition of your
QA
type if it's different from what I suggested? 3. Any template files you might be using? Also, a few suggestions for your current code: 1. Consider adding error handling around your agent calls:
Copy code
python
try:
    result = marvin.run(task["instructions"], agents=[chosen_agent], context=context)
except Exception as e:
    print(f"Error executing agent: {e}")
    result = f"Error: {str(e)}"
return result
2. You might want to add logging to debug the agent selection:
Copy code
python
print(f"Agent decision: {agent_decision}")
print(f"Chosen agent: {chosen_agent.name if chosen_agent else 'None'}")
This would help track where things might be going wrong in the orchestration process.
s
@Marvin error Traceback (most recent call last): File "C:\Users\a\marvintest.py", line 252, in <module> res = marvin.run( task.instructions, agents=[orchestration_agent], # Orchestration agent queries the LLM for task routing context={"question": question} ) File "C:\Users\a\AppData\Local\anaconda3\envs\controlflow\Lib\site-packages\marvin\fns\run.py", line 129, in run return marvin.utilities.asyncio.run_sync( ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^ run_async( ^^^^^^^^^^ ...<8 lines>... ), ^^ ) ^ File "C:\Users\a\AppData\Local\anaconda3\envs\controlflow\Lib\site-packages\marvin\utilities\asyncio.py", line 42, in run_sync return ctx.run(loop.run_until_complete, coro) ~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\a\AppData\Local\anaconda3\envs\controlflow\Lib\asyncio\base_events.py", line 725, in run_until_complete return future.result() ~~~~~~~~~~~~~^^ File "C:\Users\a\AppData\Local\anaconda3\envs\controlflow\Lib\site-packages\marvin\fns\run.py", line 109, in run_async await run_tasks_async( ...<4 lines>... ) File "C:\Users\a\AppData\Local\anaconda3\envs\controlflow\Lib\site-packages\marvin\fns\run.py", line 29, in run_tasks_async await orchestrator.run(raise_on_failure=raise_on_failure) File "C:\Users\a\AppData\Local\anaconda3\envs\controlflow\Lib\site-packages\marvin\engine\orchestrator.py", line 263, in run result = await self.run_once( ^^^^^^^^^^^^^^^^^^^^ actor=actor, active_mcp_servers=active_mcp_servers ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ) ^ File "C:\Users\a\AppData\Local\anaconda3\envs\controlflow\Lib\site-packages\marvin\engine\orchestrator.py", line 151, in run_once await task.mark_running(thread=self.thread) File "C:\Users\a\AppData\Local\anaconda3\envs\controlflow\Lib\site-packages\marvin\tasks\task.py", line 591, in mark_running self.get_prompt(), ~~~~~~~~~~~~~~~^^ File "C:\Users\a\AppData\Local\anaconda3\envs\controlflow\Lib\site-packages\marvin\tasks\task.py", line 468, in get_prompt Template(source=self.prompt_template).render(task=self), ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^ File "C:\Users\a\AppData\Local\anaconda3\envs\controlflow\Lib\site-packages\marvin\prompts.py", line 52, in render return template.render(**render_kwargs | kwargs) ~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\a\AppData\Local\anaconda3\envs\controlflow\Lib\site-packages\jinja2\environment.py", line 1295, in render self.environment.handle_exception() ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^ File "C:\Users\a\AppData\Local\anaconda3\envs\controlflow\Lib\site-packages\jinja2\environment.py", line 942, in handle_exception raise rewrite_traceback_stack(source=source) File "C:\Users\a\AppData\Local\anaconda3\envs\controlflow\Lib\site-packages\marvin\templates\task.jinja", line 27, in top-level template code <assigned-actor-id>{{ task.get_actor().id }}</assigned-actor-id> ^^^^^^^^^^^^^^^^^^^^^ jinja2.exceptions.UndefinedError: 'function object' has no attribute 'id'
m
thought for 13.5 seconds
Ah, now I see the exact error. This is happening because the Marvin framework is expecting an Agent object but is receiving a raw function. The issue is in how the orchestration_agent is being passed to
marvin.run()
. Here's how to fix it: 1. First, create an Agent for the orchestration function:
Copy code
python
# Create an orchestration agent instead of using the raw function
orchestration_agent = marvin.Agent(
    name="orchestrator",
    instructions="Route tasks to appropriate specialized agents based on the task requirements.",
    tools=[orchestration_agent]  # Your existing orchestration function becomes a tool
)
2. Then modify your main workflow to use this agent:
Copy code
python
if __name__ == "__main__":
    with marvin.Thread() as thread:
        question = dataset[20]['Question']
        fileinfo = dataset[20]['file_path']
        Q = question + fileinfo

        plan = marvin.plan(Q)
        for i, task in enumerate(plan, 1):
            print(f"{i}. {task.instructions}")

        outputs = []
        for task in plan:
            print(f"\nExecuting task: {task.instructions}")

            # Use the orchestration agent object, not the function
            res = marvin.run(
                task.instructions,
                agents=[orchestration_agent],  # Now using the Agent object
                context={"question": question}
            )

            outputs.append(res)

        final = marvin.run(
            "Using the gathered outputs, write the final answer.",
            agents=[answer_agent],
            result_type=QA,
            context={"question": question, "info": outputs}
        )

    print("\n:bulb: Final Answer:\n")
    print(final.Answer)
The error occurs because Marvin's internal templating system expects an Agent object with certain attributes (including an
id
), but it's getting a raw function instead. By wrapping your orchestration function in a proper Agent object, you provide the structure that Marvin's templating system expects. Also, for better error handling and debugging, you might want to add:
Copy code
python
@fn
def orchestration_agent(task: dict, context: dict) -> str:
    try:
        instructions = task["instructions"].lower()
        
        print(f"Processing instructions: {instructions}")  # Debug logging
        
        agent_decision = marvin.run(
            f"Based on the following task instructions: '{instructions}', which agent should handle this task?",
            agents=[answer_agent],
            context=context
        )
        
        print(f"Agent decision: {agent_decision}")  # Debug logging
        
        # ... rest of your function ...
        
    except Exception as e:
        print(f"Error in orchestration: {e}")
        raise
This should resolve the Jinja2 template error and provide better visibility into the orchestration process.
s
@Marvin i am getting Agent "orchestrator" (1c376e70) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: Mark Task 90553fb9 ("Calculate the standard population deviat...") successful │ │ Status: │ │ Result Currently, this task cannot be completed as it requires inputs which are not │ │ available. Please provide the red numbers extracted from the image so that their │ │ standard population deviation can be calculated using the Python statistics module. while i have gpt_image_agent = marvin.Agent(name="gpt-image", instructions="Process and describe the image with GPT-4o.", tools=[gpt_4o_image_function]) and this function returns the output of this function def get_image_description_gpt4o(image_path: str, Q: str) -> str: try: with open(image_path, "rb") as image_file: image_data = image_file.read() response = client.chat.completions.create( model="gpt-4o", messages=[{ "role": "user", "content": [{"type": "text", "text": f"Describe the image with information related to {Q}"}], "image_url": {"url": f"data:image/jpeg;base64,{base64.b64encode(image_data).decode('utf-8')}"} }] ) return response.choices[0].message.content except FileNotFoundError: return f"Error: Image file not found at {image_path}" except Exception as e: return f"Error querying GPT-4o: {e}" what should i do?
m
thought for 15.3 seconds
The issue is that the orchestration agent isn't properly routing the image-related task to the gpt_image_agent. Let's modify the orchestration agent to better handle image-related tasks and file paths. Here's the improved orchestration agent:
Copy code
python
@fn
def orchestration_agent(task: dict, context: dict) -> str:
    instructions = task["instructions"].lower()
    file_path = context.get("file_path", "")  # Get file path from context
    
    # Enhanced decision making for image tasks
    if any(word in instructions.lower() for word in ["image", "picture", "photo", "graph", "plot", "figure"]) or \
       any(ext in file_path.lower() for ext in [".jpg", ".jpeg", ".png", ".gif"]):
        print("Routing to GPT Image Agent")  # Debug logging
        result = marvin.run(
            instructions,
            agents=[gpt_image_agent],
            context={"file_path": file_path, "question": context.get("question", "")}
        )
        return result

    # Regular agent selection for other tasks
    agent_decision = marvin.run(
        f"Based on the following task instructions: '{instructions}', which agent should handle this task?",
        agents=[answer_agent],
        context=context
    )

    agent_map = {
        "search": search_agent,
        "file": file_processing_agent,
        "arxiv": arxiv_agent,
        "image": gpt_image_agent,
        "audio": audio_transcription_agent,
        "youtube": youtube_download_agent
    }

    chosen_agent = None
    for agent_name, agent in agent_map.items():
        if agent_name in agent_decision.lower():
            chosen_agent = agent
            break

    if not chosen_agent:
        chosen_agent = answer_agent

    result = marvin.run(instructions, agents=[chosen_agent], context=context)
    return result
Then modify your main workflow to include the file path in the context:
Copy code
python
if __name__ == "__main__":
    with marvin.Thread() as thread:
        question = dataset[20]['Question']
        fileinfo = dataset[20]['file_path']
        Q = question + fileinfo

        plan = marvin.plan(Q)
        for i, task in enumerate(plan, 1):
            print(f"{i}. {task.instructions}")

        outputs = []
        for task in plan:
            print(f"\nExecuting task: {task.instructions}")

            # Include file_path in the context
            res = marvin.run(
                task.instructions,
                agents=[orchestration_agent],
                context={
                    "question": question,
                    "file_path": fileinfo,  # Add file path to context
                    "full_query": Q
                }
            )

            outputs.append(res)

        final = marvin.run(
            "Using the gathered outputs, write the final answer.",
            agents=[answer_agent],
            result_type=QA,
            context={"question": question, "info": outputs}
        )

    print("\n:bulb: Final Answer:\n")
    print(final.Answer)
Also, modify your gpt_image_agent definition to be more explicit about its capabilities:
Copy code
python
gpt_image_agent = marvin.Agent(
    name="gpt-image",
    instructions="""Process and describe images with GPT-4o. 
    I can analyze graphs, charts, photographs, and other visual content.
    I will extract relevant information and provide detailed descriptions based on the question.""",
    tools=[gpt_4o_image_function]
)
These changes should: 1. Better detect when a task requires image processing 2. Properly route image-related tasks to the GPT-4o image agent 3. Ensure the necessary file path information is available in the context 4. Make the image agent's capabilities more explicit to the orchestration system If you're still having issues, could you share: 1. An example of the task instructions that are failing 2. The contents of
dataset[20]
(both Question and file_path) 3. Whether the image file exists at the specified path
s
@Marvin here is the plan 1. Extract the red and green numbers from the image located at C:\Users\a\.cache\huggingface\hub\datasets--gaia-benchmark--GAIA\snapshots\897f2dfbb5c952b5c3c1509e648381f9c7b70316\2023\validation\df6561b2-7ee5-4540-baab-5095f742716a.png using an OCR (optical character recognition) tool. 2. Calculate the standard population deviation of the extracted red numbers using Python 3.11's statistics module. 3. Calculate the standard sample deviation of the extracted green numbers using Python 3.11's statistics module. 4. Compute the average of the deviations obtained from tasks 2 and 3, and round the result to the nearest three decimal points. Executing task: Extract the red and green numbers from the image located at C:\Users\a\.cache\huggingface\hub\datasets--gaia-benchmark--GAIA\snapshots\897f2dfbb5c952b5c3c1509e648381f9c7b70316\2023\validation\df6561b2-7ee5-4540-baab-5095f742716a.png using an OCR (optical character recognition) tool. i didn't change the orchetrtation code as it should be able to automatically find the proper agent. how to debug the code and trace where it stucks?
m
thought for 24.7 seconds
Let's add extensive debugging to trace exactly what's happening in the orchestration process. Here's how to modify your code to see where it's getting stuck:
Copy code
python
@fn
def orchestration_agent(task: dict, context: dict) -> str:
    print("\n=== Orchestration Debug ===")
    print(f"Received task: {task}")
    print(f"Context: {context}")
    
    instructions = task["instructions"].lower()
    
    # Debug the instruction analysis
    print("\nAnalyzing instructions...")
    is_image_task = any(word in instructions.lower() for word in ["image", "picture", "photo", "graph", "plot", "figure", "ocr"])
    print(f"Is image task? {is_image_task}")
    
    # If it's clearly an image task, route directly
    if is_image_task:
        print("\nRouting directly to GPT Image Agent")
        try:
            result = marvin.run(
                instructions,
                agents=[gpt_image_agent],
                context=context
            )
            print(f"Image agent result: {result}")
            return result
        except Exception as e:
            print(f"Error in image agent execution: {str(e)}")
            raise

    # If not clearly an image task, use LLM for decision
    print("\nAsking LLM for agent decision...")
    try:
        agent_decision = marvin.run(
            f"Based on the following task instructions: '{instructions}', which agent should handle this task?",
            agents=[answer_agent],
            context=context
        )
        print(f"LLM agent decision: {agent_decision}")
    except Exception as e:
        print(f"Error in agent decision: {str(e)}")
        raise

    agent_map = {
        "search": search_agent,
        "file": file_processing_agent,
        "arxiv": arxiv_agent,
        "image": gpt_image_agent,
        "audio": audio_transcription_agent,
        "youtube": youtube_download_agent
    }

    chosen_agent = None
    for agent_name, agent in agent_map.items():
        if agent_name in agent_decision.lower():
            chosen_agent = agent
            print(f"\nChosen agent: {agent_name}")
            break

    if not chosen_agent:
        print("\nNo specific agent matched, defaulting to answer agent")
        chosen_agent = answer_agent

    print(f"\nExecuting task with {chosen_agent.name} agent...")
    try:
        result = marvin.run(instructions, agents=[chosen_agent], context=context)
        print(f"Execution result: {result}")
        return result
    except Exception as e:
        print(f"Error in task execution: {str(e)}")
        raise

# Also modify your main workflow loop for debugging
if __name__ == "__main__":
    with marvin.Thread() as thread:
        question = dataset[20]['Question']
        fileinfo = dataset[20]['file_path']
        Q = question + fileinfo

        plan = marvin.plan(Q)
        print("\n=== Execution Plan ===")
        for i, task in enumerate(plan, 1):
            print(f"{i}. {task.instructions}")

        outputs = []
        for i, task in enumerate(plan):
            print(f"\n=== Executing Task {i+1} ===")
            print(f"Instructions: {task.instructions}")
            print(f"File path exists: {os.path.exists(fileinfo)}")  # Add this line
            
            try:
                res = marvin.run(
                    task.instructions,
                    agents=[orchestration_agent],
                    context={
                        "question": question,
                        "file_path": fileinfo,
                        "full_query": Q
                    }
                )
                print(f"Task {i+1} Result: {res}")
                outputs.append(res)
            except Exception as e:
                print(f"Error in task {i+1}: {str(e)}")
                print(f"Error type: {type(e)}")
                print(f"Full traceback: {traceback.format_exc()}")
Also, let's verify the image processing function: ```python # Add this debug wrapper @fn
def gpt_4o_image_function(image_path: str, Q: str) -> str: print(f"\n=== GPT-4o Image Function Debug ===") print(f"Image path: {image_path}") print(f"Question: {Q}") print(f"File exists: {os.path.exists(image_path)}") try: result = get_image_description_gpt4o(image_path, Q) print(f"GPT-4o result: {result}") return result except Exception as e: print(f"Error in GPT-4o processing: {str(e)}") raise
Copy code
This debugging code will help us understand:
1. Which agent is being selected
2. Whether the file path is valid
3. What decisions are being made in the orchestration process
4. Where exactly any errors are occurring

Run this modified code and share the debug output - it will help us pinpoint exactly where the process is failing and why the image processing isn't being handled correctly.

Also, for this specific task (extracting red and green numbers), you might want to modify the gpt_image_agent's instructions to be more specific:

```python
gpt_image_agent = marvin.Agent(
    name="gpt-image",
    instructions="""Process images with GPT-4o to extract numerical information. 
    I can identify and extract numbers of different colors, read text and numbers from images,
    and perform OCR-like tasks. For colored numbers, I will explicitly state the color and value of each number found.""",
    tools=[gpt_4o_image_function]
)
After you run this debug version, we can better understand where the process is getting stuck and make the necessary adjustments.
s
@Marvin 1. Using the statistics module in Python 3.11, calculate the standard population deviation of the red numbers in the image located at C:\Users\a\.cache\huggingface\hub\datasets--gaia-benchmark--GAIA\snapshots\897f2dfbb5c952b5c3c1509e648381f9c7b70316\2023\validation\df6561b2-7ee5-4540-baab-5095f742716a.png. 2. Using the statistics module in Python 3.11, calculate the standard sample deviation of the green numbers in the image located at C:\Users\a\.cache\huggingface\hub\datasets--gaia-benchmark--GAIA\snapshots\897f2dfbb5c952b5c3c1509e648381f9c7b70316\2023\validation\df6561b2-7ee5-4540-baab-5095f742716a.png. 3. Calculate the average of the results from Task 1 and Task 2, and round the result to the nearest three decimal points. Executing task: Using the statistics module in Python 3.11, calculate the standard population deviation of the red numbers in the image located at C:\Users\a\.cache\huggingface\hub\datasets--gaia-benchmark--GAIA\snapshots\897f2dfbb5c952b5c3c1509e648381f9c7b70316\2023\validation\df6561b2-7ee5-4540-baab-5095f742716a.png. ╭─ Agent "orchestrator" (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: orchestration │ ╭─ Agent "orchestrator" (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: orchestration │ ╭─ Agent "orchestrator" (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: orchestration │ ╭─ Agent "orchestrator" (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: orchestration │ ╭─ Agent "orchestrator" (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: orchestration │ ╭─ Agent "orchestrator" (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: orchestration │ │ Status: │ ╭─ Agent "orchestrator" (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: orchestration │ │ Status: │ ╭─ Agent "orchestrator" (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: orchestration │ │ Status: │ ╭─ Agent "orchestrator" (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: orchestration │ │ Status: │ ╭─ Agent "orchestrator" (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: orchestration │ │ Status: │ ╭─ Agent "orchestrator" (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: orchestration │ │ Status: │ ╭─ Agent "orchestrator" (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: orchestration │ │ Status: │ ╭─ Agent "orchestrator" (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: orchestration │ │ Status: │ ╭─ Agent "orchestrator" (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: orchestration │ │ Status: │ ╭─ Agent "orchestrator" (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: orchestration │ │ Status: │ ╭─ Agent "orchestrator" (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: orchestration │ │ Status: │ ╭─ Agent "orchestrator" (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: orchestration │ │ Status: │ ╭─ Agent "orchestrator" (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: orchestration │ │ Status: │ ╭─ Agent "orchestrator" (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: orchestration │ │ Status: │ ╭─ Agent "orchestrator" (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: orchestration │ │ Status: │ ╭─ Agent "orchestrator" (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: orchestration │ │ Status: │ ╭─ Agent "orchestrator" (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: orchestration │ │ Status: │ ╭─ Agent "orchestrator" (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: orchestration │ │ Status: │ Error: [{'type': 'missing', 'loc': ('task',), 'msg': 'Field required', 'input': {}}, │ │ {'type': 'missing', 'loc': ('context',), 'msg': 'Field required', 'input': {}}] │ ╭─ Agent "orchestrator" (9043ec3d) │ Tool: Mark Task e447e4bd ("Using the statistics module in Python 3....") successful │ Result Task orchestration failed due to missing details. Executing task: Using the statistics module in Python 3.11, calculate the standard sample deviation of the green numbers in the image located at C:\Users\a\.cache\huggingface\hub\datasets--gaia-benchmark--GAIA\snapshots\897f2dfbb5c952b5c3c1509e648381f9c7b70316\2023\validation\df6561b2-7ee5-4540-baab-5095f742716a.png. ╭─ Agent "orchestrator" (9043ec3d) │ Tool: Mark Task 94443ecc ("Using the statistics module in Python 3....") successful │ Result Task orchestration failed due to requirements outside the available capabilities. Executing task: Calculate the average of the results from Task 1 and Task 2, and round the result to the nearest three decimal points. ╭─ Agent "orchestrator" (9043ec3d) │ Tool: Mark Task 1d999637 ("Calculate the average of the results fro...") successful │ Result Task cannot be completed due to unresolved dependencies from previous tasks. │ ╭─ Agent "answer-generator" (797e54ae) │ Tool: Mark Task abd32acf ("Using the gathered outputs, write the fi...") successful │ │ Status: │ Result { │ 'Answer': 'The objective cannot be fulfilled due to issues with task │ │ orchestration, missing details, and unresolved dependencies.' │ Final Answer: The objective cannot be fulfilled due to issues with task orchestration, missing details, and unresolved dependencies.
m
Your message was too long, here's your message at the allowed limit: 1 Using the statistics module in Python 3 11 calculate the standard population deviation of the red numbers in the image located at C \Users\a\ cache\huggingface\hub\datasets--gaia-benchmark--GAIA\snapshots\897f2dfbb5c952b5c3c1509e648381f9c7b70316\2023\validation\df6561b2-7ee5-4540-baab-5095f742716a png 2 Using the statistics module in Python 3 11 calculate the standard sample deviation of the green numbers in the image located at C \Users\a\ cache\huggingface\hub\datasets--gaia-benchmark--GAIA\snapshots\897f2dfbb5c952b5c3c1509e648381f9c7b70316\2023\validation\df6561b2-7ee5-4540-baab-5095f742716a png 3 Calculate the average of the results from Task 1 and Task 2 and round the result to the nearest three decimal points Executing task Using the statistics module in Python 3 11 calculate the standard population deviation of the red numbers in the image located at C \Users\a\ cache\huggingface\hub\datasets--gaia-benchmark--GAIA\snapshots\897f2dfbb5c952b5c3c1509e648381f9c7b70316\2023\validation\df6561b2-7ee5-4540-baab-5095f742716a png ╭─ Agent orchestrator (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool orchestration │ ╭─ Agent orchestrator (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool orchestration │ ╭─ Agent orchestrator (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool orchestration │ ╭─ Agent orchestrator (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool orchestration │ ╭─ Agent orchestrator (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool orchestration │ ╭─ Agent orchestrator (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool orchestration │ │ Status x │ ╭─ Agent orchestrator (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool orchestration │ │ Status x │ ╭─ Agent orchestrator (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool orchestration │ │ Status x │ ╭─ Agent orchestrator (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool orchestration │ │ Status x │ ╭─ Agent orchestrator (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool orchestration │ │ Status x │ ╭─ Agent orchestrator (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool orchestration │ │ Status x │ ╭─ Agent orchestrator (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool orchestration │ │ Status x │ ╭─ Agent orchestrator (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool orchestration │ │ Status x │ ╭─ Agent orchestrator (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool orchestration │ │ Status x │ ╭─ Agent orchestrator (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool orchestration │ │ Status x │ ╭─ Agent orchestrator (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool orchestration │ │ Status x │ ╭─ Agent orchestrator (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool orchestration │ │ Status x │ ╭─ Agent orchestrator (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool orchestration │ │ Status x │ ╭─ Agent orchestrator (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool orchestration │ │ Status x │ ╭─ Agent orchestrator (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool orchestration │ │ Status x │ ╭─ Agent orchestrator (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool orchestration │ │ Status x │ ╭─ Agent orchestrator (9043ec3d)
────────────────────────────────────────────────────────────────╮ │ │ │ Tool orchestration │ │ Status x │ ╭─ Agent orchestrator (9043ec3d) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool orchestration │ │ Status x │ Error [{'type' 'missing' 'loc' ('task' ) 'msg' 'Field required' 'input' {}} │ │ {'type' 'missing' 'loc' ('context' ) 'msg' 'Field required' 'input' {}}] │ ╭─ Agent orchestrator (9043ec3d) │ Tool Mark Task e447e4bd ( Using the statistics module in Python 3 ) successful │ Result Task orchestration failed due to missing details Executing task Using the statistics module in Python 3 11 calculate the standard sample deviation of the green
s
@Marvin 1. Using the statistics module in Python 3.11, calculate the standard population deviation of the red numbers in the image located at C:\Users\a\.cache\huggingface\hub\datasets--gaia-benchmark--GAIA\snapshots\897f2dfbb5c952b5c3c1509e648381f9c7b70316\2023\validation\df6561b2-7ee5-4540-baab-5095f742716a.png. 2. Using the statistics module in Python 3.11, calculate the standard sample deviation of the green numbers in the image located at C:\Users\a\.cache\huggingface\hub\datasets--gaia-benchmark--GAIA\snapshots\897f2dfbb5c952b5c3c1509e648381f9c7b70316\2023\validation\df6561b2-7ee5-4540-baab-5095f742716a.png. 3. Calculate the average of the results from Task 1 and Task 2, and round the result to the nearest three decimal points. Executing task: Using the statistics module in Python 3.11, calculate the standard population deviation of the red numbers in the image located at C:\Users\a\.cache\huggingface\hub\datasets--gaia-benchmark--GAIA\snapshots\897f2dfbb5c952b5c3c1509e648381f9c7b70316\2023\validation\df6561b2-7ee5-4540-baab-5095f742716a.png. │ Error: [{'type': 'missing', 'loc': ('task',), 'msg': 'Field required', 'input': {}}, │ │ {'type': 'missing', 'loc': ('context',), 'msg': 'Field required', 'input': {}}] │ ╭─ Agent "orchestrator" (9043ec3d) │ Tool: Mark Task e447e4bd ("Using the statistics module in Python 3....") successful │ │ Result Task orchestration failed due to missing details. Executing task: Using the statistics module in Python 3.11, calculate the standard sample deviation of the green numbers in the image located at C:\Users\a\.cache\huggingface\hub\datasets--gaia-benchmark--GAIA\snapshots\897f2dfbb5c952b5c3c1509e648381f9c7b70316\2023\validation\df6561b2-7ee5-4540-baab-5095f742716a.png. ╭─ Agent "orchestrator" (9043ec3d) │ Tool: Mark Task 94443ecc ("Using the statistics module in Python 3....") successful │ │ Status: │ │ Result Task orchestration failed due to requirements Executing task: Calculate the average of the results from Task 1 and Task 2, and round the result to the nearest three decimal points. ╭─ Agent "orchestrator" (9043ec3d) │ Result Task cannot be completed due to unresolved dependencies from previous tasks. ╭─ Agent "answer-generator" (797e54ae) │ Tool: Mark Task abd32acf ("Using the gathered outputs, write the fi...") successful │ 'Answer': 'The objective cannot be fulfilled due to issues with task │ │ orchestration, missing details, and unresolved dependencies.' │ Final Answer: The objective cannot be fulfilled due to issues with task orchestration, missing details, and unresolved dependencies.
m
thought for 23.4 seconds
I see the issue now. The error shows that the task and context aren't being properly passed. Let's fix the orchestration and add proper task handling for this specific statistical analysis workflow. ```python @fn def orchestration_agent(task: dict, context: dict) -> str: print("\n=== Orchestration Debug ===") print(f"Task type: {type(task)}") print(f"Task content: {task}") print(f"Context: {context}") # Ensure we have the required task structure if isinstance(task, str): instructions = task else: instructions = task.get("instructions", str(task)) # First, we need to extract numbers from the image if "image" in instructions.lower(): image_path = context.get("file_path", None) if not image_path: print("No image path provided in context") return "Error: Image path not provided in context" print(f"\nProcessing image at: {image_path}") print(f"File exists: {os.path.exists(image_path)}") try: # Extract numbers using GPT-4o vision image_result = marvin.run( f"Look at this image and list all red numbers and green numbers separately. " f"Format your response exactly like this example:\n" f"Red numbers: [1, 2, 3]\n" f"Green numbers: [4, 5, 6]", agents=[gpt_image_agent], context={"file_path": image_path} ) print(f"Image processing result: {image_result}") return image_result except Exception as e: print(f"Error processing image: {str(e)}") return f"Error processing image: {str(e)}" # Handle statistical calculations if "standard" in instructions.lower() and "deviation" in instructions.lower(): # This task needs the numbers from the previous image analysis if "red" in instructions.lower(): return "Please provide the red numbers extracted from the image to calculate the standard population deviation." elif "green" in instructions.lower(): return "Please provide the green numbers extracted from the image to calculate the standard sample deviation." # Handle averaging task if "average" in instructions.lower() and "results" in instructions.lower(): return "Cannot calculate average as the previous statistical calculations are not available." return f"Unhandled task type: {instructions}" # Modify the main workflow to properly handle the sequence if name == "__main__": with marvin.Thread() as thread: image_path = dataset[20]['file_path'] # First, extract numbers from image print("\n=== Extracting Numbers from Image ===") numbers_result = marvin.run( "Extract and list all red and green numbers from the image", agents=[gpt_image_agent], context={"file_path": image_path} ) print(f"Extracted numbers: {numbers_result}") # Parse the numbers (assuming the response is in the format we specified) try: # This is a simplified example - you'll need to parse the actual response format red_numbers = [float(n) for n in numbers_result.get("red_numbers", [])] green_numbers = [float(n) for n in numbers_result.get("green_numbers", [])] # Calculate statistics import statistics red_std_dev = statistics.pstdev(red_numbers) # population standard deviation green_std_dev = statistics.stdev(green_numbers) # sample standard deviation # Calculate average of deviations final_result = round((red_std_dev + green_std_dev) / 2, 3) print(f"\nFinal Results:") print(f"Red numbers std dev (population): {red_std_dev}") print(f"Green numbers std dev (sample): {green_std_dev}")
print(f"Average of deviations: {final_result}") except Exception as e: print(f"Error processing numbers: {str(e)}")
Copy code
Also, update the GPT-4o image agent to be more specific about number extraction:

```python
gpt_image_agent = marvin.Agent(
    name="gpt-image",
    instructions="""
    Analyze images to extract colored numbers. When asked about numbers:
    1. Identify all numbers in the image
    2. Classify them by color (specifically red and green)
    3. Return them in a structured format:
       Red numbers: [list of numbers]
       Green numbers: [list of numbers]
    Be precise in color identification and number extraction.
    """,
    tools=[gpt_4o_image_function]
)
This revised version: 1. Handles the image analysis first, extracting all numbers in one go 2. Properly structures the statistical calculations 3. Includes better error handling and debugging output 4. Uses a more specific format for number extraction 5. Processes the entire workflow in a more logical sequence Try running this updated version and let me know what output you get. The debug information will help us identify any remaining issues. Also, could you verify: 1. Does the image file exist at the specified path? 2. Can you share what the image looks like (or describe it) so we can verify the number extraction is working correctly?
s
@Marvin i don't care about this example. i want to have the agnetic system work, but it seems here it cannot work. what should i do?
m
thought for 26.7 seconds
Ah, I understand now - you want to fix the core agentic system rather than solve this specific example. The main issue is that the orchestration system isn't properly handling task routing and context. Let's fix the fundamental architecture: ```python @fn def orchestration_agent(task: dict, context: dict) -> str: print("\n=== Orchestration Debug ===") print(f"Task received: {task}") print(f"Context received: {context}") # Standardize task format instructions = task.get("instructions") if isinstance(task, dict) else str(task) # Enhanced task analysis for agent selection analysis_prompt = f""" Analyze this task and select the most appropriate agent: Task: {instructions} Available agents and their capabilities: - search_agent: Web research and information gathering - file_processing_agent: General file analysis and processing - arxiv_agent: Academic paper search and analysis - gpt_image_agent: Image analysis, OCR, and visual information extraction - audio_transcription_agent: Audio file transcription - youtube_download_agent: YouTube content downloading Respond with just the agent name, no explanation needed. """ try: # Get agent decision agent_decision = marvin.run( analysis_prompt, agents=[answer_agent], context={"task": instructions} ).strip().lower() print(f"\nAgent decision: {agent_decision}") # Map decision to actual agent agent_map = { "search": search_agent, "file": file_processing_agent, "arxiv": arxiv_agent, "image": gpt_image_agent, "audio": audio_transcription_agent, "youtube": youtube_download_agent } # Select agent chosen_agent = None for key, agent in agent_map.items(): if key in agent_decision: chosen_agent = agent break if not chosen_agent: print("No specific agent matched, using answer agent") chosen_agent = answer_agent print(f"Selected agent: {chosen_agent.name}") # Execute task with chosen agent result = marvin.run( instructions, agents=[chosen_agent], context=context ) print(f"Execution result: {result}") return result except Exception as e: print(f"Orchestration error: {str(e)}") return f"Error in task orchestration: {str(e)}" # Update agent definitions with more specific capabilities search_agent = marvin.Agent( name="search", instructions="""You are a web search specialist. You: 1. Process search queries effectively 2. Extract relevant information from search results 3. Provide well-cited answers""", tools=[search_function] ) file_processing_agent = marvin.Agent( name="file", instructions="""You are a file processing specialist. You: 1. Read and analyze file contents 2. Extract relevant information 3. Process data according to instructions""", tools=[file_analysis_function] ) gpt_image_agent = marvin.Agent( name="image", instructions="""You are an image analysis specialist. You: 1. Process and analyze images 2. Extract text and numbers from images 3. Describe visual content in detail""", tools=[gpt_4o_image_function] ) # Main workflow with better error handling if name == "__main__": with marvin.Thread() as thread: try: question = dataset[20]['Question'] fileinfo = dataset[20]['file_path'] Q = question + fileinfo print("\n=== Planning Phase ===") plan = marvin.plan(Q) for i, task in enumerate(plan, 1): print(f"{i}. {task.instructions}") outputs = [] for i, task in enumerate(plan):
print(f"\n=== Executing Task {i+1} ===") print(f"Task: {task.instructions}") try: res = marvin.run( task.instructions, agents=[orchestration_agent], context={ "question": question, "file_path": fileinfo, "full_query": Q, "previous_results": outputs # Add previous results to context } ) outputs.append(res) print(f"Task {i+1} completed successfully") except Exception as e: print(f"Error in task {i+1}: {str(e)}") outputs.append(f"Task {i+1} failed: {str(e)}") # Final answer generation try: final = marvin.run( "Using the gathered outputs, write the final answer.", agents=[answer_agent], result_type=QA, context={ "question": question, "info": outputs, "all_results": outputs } ) print("\n=== Final Answer ===") print(final.Answer) except Exception as e: print(f"Error generating final answer: {str(e)}") except Exception as e: print(f"Critical workflow error: {str(e)}")
Copy code
Key improvements in this version:

1. *Better Task Analysis*: The orchestration agent now uses a structured prompt to select the appropriate agent.

2. *Standardized Context*: All tasks receive consistent context including previous results.

3. *Robust Error Handling*: Each level has proper error handling and debugging output.

4. *Clear Agent Definitions*: Each agent has specific, detailed instructions about its capabilities.

5. *Task State Management*: Previous results are passed forward in the context.

To use this system:

1. Make sure all your agent functions (`search_function`, `file_analysis_function`, etc.) are properly defined and return results in a consistent format.

2. Test with a simple task first to verify the orchestration is working:
```python
result = marvin.run(
    "Search for information about Python",
    agents=[orchestration_agent],
    context={"question": "What is Python?"}
)
3. Monitor the debug output to see where any issues occur. If you're still having issues, let me know: 1. Are you seeing any specific error messages? 2. Which part of the workflow is failing? 3. Are the agents receiving the tasks and context correctly?
s
@Marvin i have this function for extracting info from images. what's wrong in this that the file path is avialable but i am getting Final Answer: The final result cannot be determined because the required OCR tool or functionality to process the image and extract numbers is unavailable. Without the extracted data, calculating the standard deviations and their average is not possible. Please provide the necessary tools or extracted number data to proceed. and also: GPT-4o result: ChatCompletion(id='chatcmpl-BrQw2DhWoj65CZfRUTM61E2VQDtuY', choices=[Choice(finish_reason='stop', index=0, logprobs=None, message=ChatCompletionMessage(content="To address your query, let's break down the process into steps assuming a hypothetical image with numbers highlighted in red and green. Here’s how you could go about it using Python:\n\n1. Extract Red Numbers and Green Numbers: First, you need to identify which numbers in the image are red and which are green. Let's assume:\n - Red numbers: [10, 15, 25, 30]\n - Green numbers: [12, 14, 22, 28, 30]\n\n2. Calculate the Standard Population Deviation of the Red Numbers: \n The standard population deviation assumes the data set represents the entire population. You can calculate it using the
statistics.pstdev()
function in Python:\n\n ```python\n import statistics\n\n red_numbers = [10, 15, 25, 30]\n red_stdev = statistics.pstdev(red_numbers)\n ```\n\n3. Calculate the Standard Sample Deviation of the Green Numbers:\n This assumes the set is a sample of a larger population. It can be calculated using `statistics.stdev()`:\n\n ```python\n green_numbers = [12, 14, 22, 28, 30]\n green_stdev = statistics.stdev(green_numbers)\n ```\n\n4. Average the Standard Deviations:\n Calculate the average of the two deviations obtained above:\n\n ```python\n average_stdev = (red_stdev + green_stdev) / 2\n ```\n\n5. Round to Three Decimal Points:\n Finally, round the result to three decimal places:\n\n ```python\n average_stdev_rounded = round(average_stdev, 3)\n ```\n\nWithout the actual numbers from the image, the output here is a theoretical framework. You can replace red_numbers and green_numbers with the actual numbers from your image to get the result. If you follow these steps, using the numbers proper, you will obtain the accurate rounded result.", refusal=None, role='assistant', annotations=[], audio=None, function_call=None, tool_calls=None))], created=1752074622, model='gpt-4o-2024-08-06', object='chat.completion', service_tier='default', system_fingerprint='fp_07871e2ad8', usage=CompletionUsage(completion_tokens=413, prompt_tokens=63, total_tokens=476, completion_tokens_details=CompletionTokensDetails(accepted_prediction_tokens=0, audio_tokens=0, reasoning_tokens=0, rejected_prediction_tokens=0), prompt_tokens_details=PromptTokensDetails(audio_tokens=0, cached_tokens=0)))
m
thought for 21.8 seconds
I see the issue. The GPT-4o vision model is returning a theoretical explanation instead of actually analyzing the image. Let's fix the image processing function:
Copy code
python
@fn
def gpt_4o_image_function(image_path: str, Q: str) -> str:
    try:
        print(f"\n=== Processing Image ===")
        print(f"Image path: {image_path}")
        print(f"Question: {Q}")
        
        # Verify file exists
        if not os.path.exists(image_path):
            return f"Error: Image file not found at {image_path}"
            
        # Read the image
        with open(image_path, "rb") as image_file:
            image_data = image_file.read()
            
        # Create a more direct prompt for the vision model
        prompt = """
        Look at this image and:
        1. Identify all numbers that are colored in RED. List them as numbers, not words.
        2. Identify all numbers that are colored in GREEN. List them as numbers, not words.
        
        Format your response EXACTLY like this:
        RED NUMBERS: [x, y, z]
        GREEN NUMBERS: [a, b, c]
        
        Only provide the lists of numbers, no explanation or additional text.
        """
            
        response = client.chat.completions.create(
            model="gpt-4o",
            messages=[
                {
                    "role": "user",
                    "content": [
                        {
                            "type": "text",
                            "text": prompt
                        },
                        {
                            "type": "image_url",
                            "image_url": {
                                "url": f"data:image/jpeg;base64,{base64.b64encode(image_data).decode('utf-8')}"
                            }
                        }
                    ]
                }
            ],
            max_tokens=100  # Limit response length to encourage concise output
        )
        
        result = response.choices[0].message.content
        print(f"Raw GPT-4o response: {result}")
        
        # Validate the response format
        if "RED NUMBERS:" not in result or "GREEN NUMBERS:" not in result:
            return "Error: Vision model did not return properly formatted number lists"
            
        return result

    except Exception as e:
        print(f"Error in image processing: {str(e)}")
        return f"Error processing image: {str(e)}"
And update the image agent definition:
Copy code
python
gpt_image_agent = marvin.Agent(
    name="gpt-image",
    instructions="""You are a specialized image analysis agent that:
    1. ONLY extracts colored numbers from images
    2. Returns EXACTLY two lists: red numbers and green numbers
    3. Uses the format:
       RED NUMBERS: [x, y, z]
       GREEN NUMBERS: [a, b, c]
    4. Never provides explanations or theoretical examples
    5. Returns only the actual numbers found in the image""",
    tools=[gpt_4o_image_function]
)
Key changes made: 1. More specific prompt for the vision model 2. Strict response format requirement 3. Token limit to prevent theoretical explanations 4. Better error handling and validation 5. Clear instructions for the agent to only return actual numbers The previous version was getting theoretical because: 1. The prompt wasn't specific enough 2. The model was falling back to explanation mode 3. There was no format enforcement Try this updated version and let me know if you're still seeing the theoretical response instead of actual image analysis. If it still doesn't work, we can: 1. Try different prompt formulations 2. Add more strict response parsing 3. Implement additional validation steps Would you like to try this version, or should we modify it further?
s
@Marvin look for each task in plan, it is doing res = marvin.run( task.instructions, agents=[orchestration_agent], context={"question": question, "fileinfo": fileinfo, "task":task } ) then in orchestator agent, we have def orchestration(task: dict, context: dict), and in this function result = marvin.run( instructions, agents=[chosen_agent], context=context ) then, based on the image it will call @fn def gpt_4o_image_function(image_path: str, Q: str) -> str: return get_image_description_gpt4o(image_path, Q) and then def get_image_description_gpt4o(image_path: str, Q: str) -> str: print(f"\n=== GPT-4o Image Function Debug ===") print(f"Image path: {image_path}") print(f"Question: {Q}") print(f"File exists: {os.path.exists(image_path)}") try: with open(image_path, "rb") as image_file: image_data = image_file.read() # print("read image successfully", image_data) response = client.chat.completions.create( model="gpt-4o", messages=[{ "role": "user", "content": [{"type": "text", "text": f"Describe the image with information related to {Q}"}], "image_url": {"url": f"data:image/jpeg;base64,{base64.b64encode(image_data).decode('utf-8')}"} }] ) print(f"GPT-4o result: {response}") return response.choices[0].message.content except FileNotFoundError: return f"Error: Image file not found at {image_path}" except Exception as e: return f"Error querying GPT-4o: {e}" I need to be sure about the context, and provide the task instead of the question to the image agent.
m
thought for 20.1 seconds
Ah, now I understand the context flow issue. Let's fix the context passing through the entire chain to ensure the image path and task instructions are properly propagated:
Copy code
python
@fn
def orchestration_agent(task: dict, context: dict) -> str:
    print("\n=== Orchestration Debug ===")
    print(f"Task received: {task}")
    print(f"Context received: {context}")

    # Get instructions from task
    instructions = task.get("instructions") if isinstance(task, dict) else str(task)
    
    # Get file path from context
    file_path = context.get("fileinfo")
    
    # If this is an image-related task
    if any(word in instructions.lower() for word in ["image", "picture", "photo", "ocr", "numbers"]):
        print(f"\nRouting to image agent with path: {file_path}")
        chosen_agent = gpt_image_agent
        
        # Pass the full task instructions and file path to the image agent
        modified_context = {
            "file_path": file_path,
            "task_instructions": instructions,
            "image_path": file_path,  # Explicit path for the image function
            "Q": instructions  # Pass full instructions as the question
        }
    else:
        # ... other agent selection logic ...
        chosen_agent = answer_agent
        modified_context = context

    print(f"Selected agent: {chosen_agent.name}")
    print(f"Modified context: {modified_context}")

    # Execute with modified context
    result = marvin.run(
        instructions,
        agents=[chosen_agent],
        context=modified_context
    )
    
    return result

@fn
def gpt_4o_image_function(image_path: str, Q: str) -> str:
    print("\n=== Image Function Debug ===")
    print(f"Received image_path: {image_path}")
    print(f"Received task: {Q}")
    
    return get_image_description_gpt4o(image_path, Q)

def get_image_description_gpt4o(image_path: str, Q: str) -> str:
    print(f"\n=== GPT-4o Processing ===")
    print(f"Processing image at: {image_path}")
    print(f"Processing task: {Q}")
    print(f"File exists: {os.path.exists(image_path)}")

    try:
        with open(image_path, "rb") as image_file:
            image_data = image_file.read()

        # Modified prompt to focus on the specific task
        response = client.chat.completions.create(
            model="gpt-4o",
            messages=[{
                "role": "user",
                "content": [
                    {
                        "type": "text",
                        "text": f"Complete this specific task for the image: {Q}"
                    },
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": f"data:image/jpeg;base64,{base64.b64encode(image_data).decode('utf-8')}"
                        }
                    }
                ]
            }]
        )
        return response.choices[0].message.content

    except FileNotFoundError:
        return f"Error: Image file not found at {image_path}"
    except Exception as e:
        return f"Error processing image: {str(e)}"

# Main workflow remains the same, but ensure context includes file path
if __name__ == "__main__":
    with marvin.Thread() as thread:
        question = dataset[20]['Question']
        fileinfo = dataset[20]['file_path']
        
        plan = marvin.plan(question)
        outputs = []
        
        for task in plan:
            print(f"\nExecuting task: {task.instructions}")
            
            res = marvin.run(
                task.instructions,
                agents=[orchestration_agent],
                context={
                    "question": question,
                    "fileinfo": fileinfo,
                    "task": task
                }
            )
            outputs.append(res)
Key changes: 1. Orchestration agent now properly propagates the file path and task instructions 2. Context is modified specifically for image tasks
3. Full task instructions are passed to the image processing function 4. Debug printing at each step to track context flow 5. Image processing function receives the complete task instructions This should now: 1. Properly pass the file path through the entire chain 2. Use the actual task instructions when processing the image 3. Maintain context consistency throughout the execution Try this version and let me know if you see the context being properly passed through the chain in the debug output. We can further adjust if needed.
s
@Marvin i have this function for image description def get_image_description_gpt4o(image_path: str, Q: str, instructions:str) -> str: print(f"\n=== GPT-4o Image Function Debug ===") print(f"Image path: {image_path}") print(f"Question: {Q}") print(f"File exists: {os.path.exists(image_path)}") try: with open(image_path, "rb") as image_file: image_data = image_file.read() # print("read image successfully", image_data) response = client.chat.completions.create( model="gpt-4o", messages=[{ "role": "user", "content": [{"type": "text", "text": f"Complete this specific task for the image: {instructions}"}], "image_url": {"url": f"data:image/jpeg;base64,{base64.b64encode(image_data).decode('utf-8')}"} }] ) print(f"GPT-4o result: {response}") return response.choices[0].message.content except FileNotFoundError: return f"Error: Image file not found at {image_path}" except Exception as e: return f"Error querying GPT-4o: {e}" in the orchestration function for the orchestrator -agent def orchestration(task: dict, context: dict) -> str: print("Orchestration Debug ") print(f"Task received: {task}") print(f"Context received: {context}") instructions = task.get("instructions") if isinstance(task, dict) else str(task) print("instructions", instructions) # file_path = context.get("fileinfo") analysis_prompt = f""" Analyze this task and select the most appropriate agent: Task: {instructions} Available agents and their capabilities: - search_agent: Web research and information gathering - file_processing_agent: General file analysis and processing - arxiv_agent: Academic paper search and analysis - gpt_image_agent: Image analysis, OCR, and visual information extraction - audio_transcription_agent: Audio file transcription - youtube_download_agent: YouTube content downloading Respond with just the agent name, no explanation needed. """ try: agent_decision = marvin.run( analysis_prompt, agents=[answer_agent], context={"task": instructions}).strip().lower() print(f"\nAgent decision: {agent_decision}") agent_map = { "search": search_agent, "file": file_processing_agent, "arxiv": arxiv_agent, "image": gpt_image_agent, "audio": audio_transcription_agent, "youtube": youtube_download_agent } chosen_agent = None for key, agent in agent_map.items(): if key in agent_decision: chosen_agent = agent break if not chosen_agent: print("No specific agent matched, using answer agent") chosen_agent = answer_agent print(f"Selected agent: {chosen_agent.name}") result = marvin.run( instructions, agents=[chosen_agent], # context=context modified_context = { "image_path": context.get('file_path'), "Q": context.get('task') } ) print(f"Execution result: {result}") return result except Exception as e: print(f"Orchestration error: {str(e)}") return f"Error in task orchestration: {str(e)}" it seems it is not working due to the wrong context passing
m
thought for 22.1 seconds
I see the issue. Let's fix the context passing through the entire chain. Here's the corrected version: ```python @fn def orchestration_agent(task: dict, context: dict) -> str: print("\n=== Orchestration Debug ===") print(f"Task received: {task}") print(f"Context received: {context}") # Get instructions from task instructions = task.get("instructions") if isinstance(task, dict) else str(task) print("Instructions:", instructions) analysis_prompt = f""" Analyze this task and select the most appropriate agent: Task: {instructions} Available agents and their capabilities: - search_agent: Web research and information gathering - file_processing_agent: General file analysis and processing - arxiv_agent: Academic paper search and analysis - gpt_image_agent: Image analysis, OCR, and visual information extraction - audio_transcription_agent: Audio file transcription - youtube_download_agent: YouTube content downloading Respond with just the agent name, no explanation needed. """ try: # Get agent decision agent_decision = marvin.run( analysis_prompt, agents=[answer_agent], context={"task": instructions} ).strip().lower() print(f"\nAgent decision: {agent_decision}") # Map decision to actual agent agent_map = { "search": search_agent, "file": file_processing_agent, "arxiv": arxiv_agent, "image": gpt_image_agent, "audio": audio_transcription_agent, "youtube": youtube_download_agent } # Select agent chosen_agent = None for key, agent in agent_map.items(): if key in agent_decision: chosen_agent = agent break if not chosen_agent: print("No specific agent matched, using answer agent") chosen_agent = answer_agent print(f"Selected agent: {chosen_agent.name}") # Prepare context for the chosen agent modified_context = { "image_path": context.get("fileinfo"), # Use fileinfo as image_path "Q": context.get("question"), # Pass the original question "instructions": instructions, # Pass the task instructions "task": task # Pass the full task object } print(f"Modified context for agent: {modified_context}") # Execute with modified context result = marvin.run( instructions, agents=[chosen_agent], context=modified_context ) print(f"Execution result: {result}") return result except Exception as e: print(f"Orchestration error: {str(e)}") return f"Error in task orchestration: {str(e)}" # Update the image function to match the new context structure @fn def gpt_4o_image_function(image_path: str, Q: str) -> str: print("\n=== Image Function Debug ===") print(f"Received image_path: {image_path}") print(f"Received Q: {Q}") # Get instructions from the context context = marvin.context.get() instructions = context.get("instructions", Q) return get_image_description_gpt4o(image_path, Q, instructions) # Main workflow with proper context passing if name == "__main__": with marvin.Thread() as thread: question = dataset[20]['Question'] fileinfo = dataset[20]['file_path'] plan = marvin.plan(question) outputs = [] for task in plan: print(f"\nExecuting task: {task.instructions}") # Pass all necessary context res = marvin.run( task.instructions, agents=[orchestration_agent], context={ "question": question, "fileinfo": fileinfo, "task": task,
"full_context": { "question": question, "fileinfo": fileinfo, "task": task } } ) outputs.append(res) ``` Key changes made: 1. Fixed context passing in the orchestration agent 2. Added proper context mapping for the image function 3. Ensured all necessary fields are passed through the chain 4. Added more debug printing to track context flow 5. Made sure the image function receives all required parameters The context flow is now: 1. Main workflow → orchestration_agent (with full context) 2. orchestration_agent → chosen agent (with modified_context) 3. chosen agent → specific function (with required parameters) Try this version and check if the debug output shows: 1. Correct file path being passed 2. Task instructions being properly propagated 3. Context being properly received by the image function Let me know if you see any issues in the debug output and we can further adjust the context passing.
s
@Marvin getting "The task requires image processing capabilities which are not available. Please reroute to an agent with image processing capabilities or use a tool that can perform image recognition and categorization." which shows the gpt image analysis is not called?
m
thought for 24.1 seconds
The issue is likely in the agent selection and routing logic. Let's debug and fix the orchestration agent to ensure it properly identifies and routes to the image agent: ```python @fn def orchestration_agent(task: dict, context: dict) -> str: print("\n=== Orchestration Debug ===") print(f"Task received: {task}") print(f"Context received: {context}") # Get instructions from task instructions = task.get("instructions") if isinstance(task, dict) else str(task) print("Instructions:", instructions) # First, check if this is clearly an image task is_image_task = any(word in instructions.lower() for word in [ "image", "picture", "photo", "ocr", "extract from image", "numbers from image", "read from image" ]) if is_image_task: print("Directly routing to image agent due to image-related task") chosen_agent = gpt_image_agent else: # Only use LLM for agent selection if it's not clearly an image task analysis_prompt = f""" Analyze this task and select the most appropriate agent: Task: {instructions} Available agents and their capabilities: - search_agent: Web research and information gathering - file_processing_agent: General file analysis and processing - arxiv_agent: Academic paper search and analysis - gpt_image_agent: Image analysis, OCR, and visual information extraction - audio_transcription_agent: Audio file transcription - youtube_download_agent: YouTube content downloading Respond with just the agent name, no explanation needed. """ agent_decision = marvin.run( analysis_prompt, agents=[answer_agent], context={"task": instructions} ).strip().lower() print(f"\nAgent decision: {agent_decision}") agent_map = { "search": search_agent, "file": file_processing_agent, "arxiv": arxiv_agent, "image": gpt_image_agent, "audio": audio_transcription_agent, "youtube": youtube_download_agent } chosen_agent = None for key, agent in agent_map.items(): if key in agent_decision: chosen_agent = agent break if not chosen_agent: chosen_agent = answer_agent print(f"Selected agent: {chosen_agent.name}") # Prepare context for the chosen agent modified_context = { "image_path": context.get("fileinfo"), "Q": instructions, # Pass the task instructions as Q "instructions": instructions, "file_path": context.get("fileinfo"), # Ensure file_path is included "task": task, "question": context.get("question") } print(f"Modified context being passed to agent: {modified_context}") try: # Execute with modified context result = marvin.run( instructions, agents=[chosen_agent], context=modified_context ) print(f"Execution result: {result}") return result except Exception as e: print(f"Orchestration error: {str(e)}") return f"Error in task orchestration: {str(e)}" # Update the image agent definition to be more explicit gpt_image_agent = marvin.Agent( name="gpt-image", instructions="""You are an image analysis specialist that: 1. Processes and analyzes images using GPT-4o vision capabilities 2. Extracts text, numbers, and visual information from images 3. Performs specific analysis tasks as requested 4. Works with image files provided in the context Always use the provided image processing tools for analysis. Never return theoretical examples or placeholder responses.""", tools=[gpt_4o_image_function] ) # Update the image function to handle the context properly @fn
def gpt_4o_image_function(image_path: str, Q: str) -> str: print("\n=== Image Function Debug ===") print(f"Received image_path: {image_path}") print(f"Received Q: {Q}") if not image_path: return "Error: No image path provided" # Get additional context if needed context = marvin.context.get() instructions = context.get("instructions", Q) print(f"Processing image with instructions: {instructions}") return get_image_description_gpt4o(image_path, Q, instructions)
Copy code
And in your main workflow, ensure you're passing the file path correctly:

```python
if __name__ == "__main__":
    with marvin.Thread() as thread:
        question = dataset[20]['Question']
        fileinfo = dataset[20]['file_path']
        
        plan = marvin.plan(question)
        outputs = []
        
        for task in plan:
            print(f"\nExecuting task: {task.instructions}")
            
            # Ensure file path is included in context
            res = marvin.run(
                task.instructions,
                agents=[orchestration_agent],
                context={
                    "question": question,
                    "fileinfo": fileinfo,  # This should be the full path to your image
                    "task": task,
                    "file_path": fileinfo  # Include both for compatibility
                }
            )
            outputs.append(res)
Key changes made: 1. Added direct image task detection 2. Improved context passing for image tasks 3. Made the image agent instructions more explicit 4. Added more debug logging 5. Ensured file paths are properly passed through the chain Could you run this version and share: 1. The debug output showing which agent is selected 2. Whether the image function is being called 3. The full path to the image that's being passed This will help us identify if: - The task is being correctly identified as an image task - The image agent is being selected - The file path is being properly passed through the chain
s
@Marvin why non of these print stuff works? i can't see anything other than the res prints
m
thought for 27.7 seconds
The print statements might not be visible because of how Marvin handles logging in its execution environment. Let's modify the logging to ensure visibility using Marvin's logging system or force prints to appear: ```python import sys from datetime import datetime def log_debug(message): timestamp = datetime.now().strftime("%H:%M:%S") print(f"[DEBUG {timestamp}] {message}", file=sys.stderr, flush=True) @fn def orchestration_agent(task: dict, context: dict) -> str: log_debug("=== Orchestration Agent Started ===") log_debug(f"Task received: {task}") log_debug(f"Context received: {context}") # Get instructions from task instructions = task.get("instructions") if isinstance(task, dict) else str(task) log_debug(f"Instructions: {instructions}") # Check if this is an image task is_image_task = any(word in instructions.lower() for word in [ "image", "picture", "photo", "ocr", "extract from image", "numbers from image", "read from image" ]) log_debug(f"Is image task? {is_image_task}") if is_image_task: log_debug("Routing directly to image agent") chosen_agent = gpt_image_agent else: log_debug("Using LLM for agent selection") analysis_prompt = f""" Analyze this task and select the most appropriate agent: Task: {instructions} Available agents: search_agent, file_processing_agent, arxiv_agent, gpt_image_agent, audio_transcription_agent, youtube_download_agent Respond with just the agent name, no explanation needed. """ agent_decision = marvin.run( analysis_prompt, agents=[answer_agent], context={"task": instructions} ).strip().lower() log_debug(f"Agent decision: {agent_decision}") agent_map = { "search": search_agent, "file": file_processing_agent, "arxiv": arxiv_agent, "image": gpt_image_agent, "audio": audio_transcription_agent, "youtube": youtube_download_agent } chosen_agent = None for key, agent in agent_map.items(): if key in agent_decision: chosen_agent = agent break if not chosen_agent: log_debug("No specific agent matched, using answer agent") chosen_agent = answer_agent log_debug(f"Selected agent: {chosen_agent.name}") # Prepare context modified_context = { "image_path": context.get("fileinfo"), "Q": instructions, "instructions": instructions, "file_path": context.get("fileinfo"), "task": task, "question": context.get("question") } log_debug(f"Modified context: {modified_context}") try: result = marvin.run( instructions, agents=[chosen_agent], context=modified_context ) log_debug(f"Execution result: {result}") return result except Exception as e: log_debug(f"Orchestration error: {str(e)}") return f"Error in task orchestration: {str(e)}" @fn def gpt_4o_image_function(image_path: str, Q: str) -> str: log_debug("=== Image Function Started ===") log_debug(f"Received image_path: {image_path}") log_debug(f"Received Q: {Q}") if not image_path: return "Error: No image path provided" context = marvin.context.get() instructions = context.get("instructions", Q) log_debug(f"Processing image with instructions: {instructions}") return get_image_description_gpt4o(image_path, Q, instructions) def get_image_description_gpt4o(image_path: str, Q: str, instructions: str) -> str: log_debug("=== GPT-4o Processing Started ===") log_debug(f"Image path: {image_path}") log_debug(f"Question: {Q}") log_debug(f"Instructions: {instructions}") log_debug(f"File exists: {os.path.exists(image_path)}")
try: with open(image_path, "rb") as image_file: image_data = image_file.read() log_debug("Image file read successfully") response = client.chat.completions.create( model="gpt-4o", messages=[{ "role": "user", "content": [ {"type": "text", "text": f"Complete this specific task for the image: {instructions}"}, {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64.b64encode(image_data).decode('utf-8')}"}} ] }] ) log_debug("GPT-4o API call completed") return response.choices[0].message.content except FileNotFoundError: error_msg = f"Error: Image file not found at {image_path}" log_debug(error_msg) return error_msg except Exception as e: error_msg = f"Error querying GPT-4o: {e}" log_debug(error_msg) return error_msg # Main workflow with logging if name == "__main__": with marvin.Thread() as thread: log_debug("=== Workflow Started ===") question = dataset[20]['Question'] fileinfo = dataset[20]['file_path'] log_debug(f"Question: {question}") log_debug(f"File path: {fileinfo}") plan = marvin.plan(question) outputs = [] for i, task in enumerate(plan, 1): log_debug(f"\n=== Executing Task {i} ===") log_debug(f"Task instructions: {task.instructions}") try: res = marvin.run( task.instructions, agents=[orchestration_agent], context={ "question": question, "fileinfo": fileinfo, "task": task, "file_path": fileinfo } ) log_debug(f"Task {i} result: {res}") outputs.append(res) except Exception as e: log_debug(f"Error in task {i}: {str(e)}") log_debug(f"Full error: {sys.exc_info()}") ``` Key changes: 1. Added custom logging function that writes to stderr with flush=True 2. Added timestamps to log messages 3. Forced output using sys.stderr 4. Added more detailed logging throughout the process 5. Added exception tracking with full stack traces This should make the debugging output visible. The logs will show: - When each component starts - What data is being passed - Which agent is selected - Whether the image processing is triggered - Any errors that occur Try running this version and you should see much more detailed output about what's happening at each step. Let me know if you still don't see the debug output and we can try alternative logging approaches.
s
@Marvin what is context in agents?
m
thought for 23.5 seconds
In Marvin agents, context is a dictionary that carries information and state between different parts of the execution chain. Let me explain how context works in Marvin:
Copy code
python
# Example of context usage in Marvin agents
@fn
def orchestration_agent(task: dict, context: dict) -> str:
    # Context received from marvin.run() call
    print(f"Context received: {context}")
    
    # Context can include things like:
    file_path = context.get("file_path")  # File paths
    question = context.get("question")     # Original question
    task_info = context.get("task")       # Task information
    previous_results = context.get("previous_results")  # Results from previous tasks

    # You can also access global context using marvin.context
    global_context = marvin.context.get()

    # When calling another agent, you can pass modified context
    modified_context = {
        "image_path": file_path,
        "Q": question,
        "instructions": task_info,
        # Add any other relevant information
    }

    result = marvin.run(
        instructions,
        agents=[chosen_agent],
        context=modified_context  # This context will be available to the next agent
    )
Context is used for: 1. Passing Data Between Agents:
Copy code
python
# In main workflow
res = marvin.run(
    task.instructions,
    agents=[orchestration_agent],
    context={
        "question": original_question,
        "file_path": image_path,
        "previous_results": previous_outputs
    }
)
2. Accessing Task-Specific Information:
Copy code
python
@fn
def gpt_4o_image_function(image_path: str, Q: str) -> str:
    # Get additional context beyond function parameters
    context = marvin.context.get()
    specific_instructions = context.get("instructions")
    original_task = context.get("task")
3. Maintaining State:
Copy code
python
@fn
def process_with_history(input_data: str) -> str:
    context = marvin.context.get()
    previous_results = context.get("previous_results", [])
    # Use previous results to inform current processing
4. Sharing Configuration:
Copy code
python
# Set up common configuration in main workflow
common_context = {
    "model_config": {"temperature": 0.7},
    "api_keys": {"service_key": "xyz"},
    "file_paths": {"base_dir": "/path/to/files"}
}

res = marvin.run(
    instructions,
    agents=[agent],
    context=common_context
)
5. Error Handling and Debugging:
Copy code
python
@fn
def safe_processing_agent(task: dict, context: dict) -> str:
    try:
        # Access debug information from context
        debug_mode = context.get("debug", False)
        if debug_mode:
            print(f"Processing task with context: {context}")
            
        result = process_task(task)
        return result
    except Exception as e:
        # Add error information to context
        error_context = {
            "error": str(e),
            "task": task,
            "timestamp": datetime.now()
        }
        marvin.context.update(error_context)
        raise
Best Practices for Context Usage: 1. Document Expected Context:
Copy code
python
@fn
def my_agent(task: dict, context: dict) -> str:
    """
    Agent that processes tasks with specific context requirements.
    
    Expected context:
    - file_path: str - Path to input file
    - question: str - Original question
    - task: dict - Task information
    - previous_results: list - Results from previous tasks
    """
    # Agent implementation
2. Validate Required Context:
Copy code
python
@fn
def image_processing_agent(task: dict, context: dict) -> str:
    required_keys = ["image_path", "instructions"]
    missing_keys = [key for key in required_keys if key not in context]
    
    if missing_keys:
        return f"Error: Missing required context keys: {missing_keys}"
3. Maintain Context Chain: ```python @fn def orchestration_agent(task: dict, context: dict) -> str: # Preserve original context while adding new information modified_context = {
**context, # Keep all original context "current_task": task, "timestamp": datetime.now() } result = marvin.run( task.instructions, agents=[specific_agent], context=modified_context )
Copy code
For your specific case with image processing, you might want to structure your context like this:

```python
# In main workflow
context = {
    "question": dataset[20]['Question'],
    "file_path": dataset[20]['file_path'],
    "task": current_task,
    "execution_info": {
        "step": current_step,
        "total_steps": total_steps
    },
    "image_processing": {
        "image_path": image_path,
        "instructions": specific_instructions,
        "expected_output": "list_of_numbers"
    }
}

# This context will be available throughout the execution chain
res = marvin.run(
    task.instructions,
    agents=[orchestration_agent],
    context=context
)
This structured approach to context helps maintain clear data flow and state management throughout your agent chain.
s
@Marvin in my code, how i can debug it step by step and see how it works?
m
thought for 34.8 seconds
Let's add comprehensive step-by-step debugging to your code. Here's how to modify it to see exactly what's happening at each stage: ```python import sys from datetime import datetime def debug_log(step: str, message: str): """Helper function to make debug output very visible""" timestamp = datetime.now().strftime("%H:%M:%S") print(f"\n{'='*80}", file=sys.stderr, flush=True) print(f"STEP [{step}] - {timestamp}", file=sys.stderr, flush=True) print(f"{message}", file=sys.stderr, flush=True) print('='*80 + "\n", file=sys.stderr, flush=True) @fn def orchestration_agent(task: dict, context: dict) -> str: debug_log("1. ORCHESTRATION START", f""" Task: {task} Context: {context} """) # Get instructions instructions = task.get("instructions") if isinstance(task, dict) else str(task) debug_log("2. INSTRUCTIONS EXTRACTED", f"Instructions: {instructions}") # Check for image-related task is_image_task = any(word in instructions.lower() for word in [ "image", "picture", "photo", "ocr", "extract from image" ]) debug_log("3. TASK ANALYSIS", f""" Is image task? {is_image_task} Task text: {instructions} """) if is_image_task: debug_log("4A. IMAGE TASK DETECTED", "Routing directly to image agent") chosen_agent = gpt_image_agent else: debug_log("4B. NON-IMAGE TASK", "Using LLM for agent selection") analysis_prompt = f"Based on: '{instructions}', which agent? (search/file/arxiv/image/audio/youtube)" agent_decision = marvin.run( analysis_prompt, agents=[answer_agent], context={"task": instructions} ).strip().lower() debug_log("5. AGENT DECISION", f"LLM chose: {agent_decision}") agent_map = { "search": search_agent, "file": file_processing_agent, "arxiv": arxiv_agent, "image": gpt_image_agent, "audio": audio_transcription_agent, "youtube": youtube_download_agent } chosen_agent = None for key, agent in agent_map.items(): if key in agent_decision: chosen_agent = agent break if not chosen_agent: debug_log("6A. NO AGENT MATCHED", "Defaulting to answer agent") chosen_agent = answer_agent else: debug_log("6B. AGENT SELECTED", f"Using agent: {chosen_agent.name}") # Prepare context for the chosen agent modified_context = { "image_path": context.get("fileinfo"), "Q": instructions, "instructions": instructions, "file_path": context.get("fileinfo"), "task": task } debug_log("7. CONTEXT PREPARED", f""" Modified context: {modified_context} Agent: {chosen_agent.name} """) try: debug_log("8. EXECUTING AGENT", f""" Agent: {chosen_agent.name} Instructions: {instructions} Context: {modified_context} """) result = marvin.run( instructions, agents=[chosen_agent], context=modified_context ) debug_log("9. EXECUTION COMPLETE", f"Result: {result}") return result except Exception as e: debug_log("ERROR", f""" Error occurred in orchestration: {str(e)} Agent: {chosen_agent.name} Context: {modified_context} """) return f"Error in task orchestration: {str(e)}" @fn def gpt_4o_image_function(image_path: str, Q: str) -> str: debug_log("IMAGE-1", f""" Image Function Called Path: {image_path} Question: {Q} """) context = marvin.context.get() instructions = context.get("instructions", Q) debug_log("IMAGE-2", f"Processing with instructions: {instructions}") return get_image_description_gpt4o(image_path, Q, instructions)
def get_image_description_gpt4o(image_path: str, Q: str, instructions: str) -> str: debug_log("GPT4V-1", f""" GPT-4 Vision Processing Start Path: {image_path} Question: {Q} Instructions: {instructions} File exists: {os.path.exists(image_path)} """) try: with open(image_path, "rb") as image_file: image_data = image_file.read() debug_log("GPT4V-2", "Image file read successfully") response = client.chat.completions.create( model="gpt-4o", messages=[{ "role": "user", "content": [ {"type": "text", "text": f"Complete this specific task for the image: {instructions}"}, {"type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{base64.b64encode(image_data).decode('utf-8')}" }} ] }] ) debug_log("GPT4V-3", f"API Response: {response}") return response.choices[0].message.content except FileNotFoundError: debug_log("GPT4V-ERROR", f"File not found: {image_path}") return f"Error: Image file not found at {image_path}" except Exception as e: debug_log("GPT4V-ERROR", f"Error: {str(e)}") return f"Error querying GPT-4o: {e}" # Main workflow with debugging if name == "__main__": with marvin.Thread() as thread: debug_log("MAIN-1", "Workflow Started") question = dataset[20]['Question'] fileinfo = dataset[20]['file_path'] debug_log("MAIN-2", f""" Question: {question} File path: {fileinfo} """) plan = marvin.plan(question) debug_log("MAIN-3", f"Plan created: {plan}") outputs = [] for i, task in enumerate(plan, 1): debug_log(f"TASK-{i}", f""" Executing Task {i} of {len(plan)} Instructions: {task.instructions} """) try: res = marvin.run( task.instructions, agents=[orchestration_agent], context={ "question": question, "fileinfo": fileinfo, "task": task, "file_path": fileinfo } ) debug_log(f"RESULT-{i}", f"Task {i} result: {res}") outputs.append(res) except Exception as e: debug_log(f"ERROR-{i}", f""" Error in task {i}: {str(e)} Full error: {sys.exc_info()} """) ``` To use this debug version: 1. Run your code normally - you'll see detailed step-by-step output with clear separators 2. Look for these key stages: - MAIN-* : Main workflow steps - TASK-* : Individual task execution - Steps 1-9: Orchestration agent steps - IMAGE-* : Image function steps - GPT4V-* : GPT-4 Vision processing steps 3. Each debug message will show: - Timestamp - Step name - Relevant data for that step - Clear separation between steps This will help you: - See exactly which parts of the code are being executed - Track how data flows between components - Identify where any issues occur - Verify if the image processing is being triggered - Check if context is being passed correctly When you run this, you should see very clear, step-by-step output showing exactly what's happening at each stage. Let me know what you see in the output and we can identify where any issues might be occurring.
s
@Marvin this log-debug doesn't work
m
thought for 28.5 seconds
Let's try a simpler but effective debugging approach using direct prints with clear markers. Here's how to modify your code: ```python @fn def orchestration_agent(task: dict, context: dict) -> str: print("\n>>>>> ORCHESTRATION START <<<<<") print(f"TASK RECEIVED: {task}") print(f"CONTEXT RECEIVED: {context}") # Get instructions instructions = task.get("instructions") if isinstance(task, dict) else str(task) print(f"\n>>>>> INSTRUCTIONS: {instructions}") # Check for image task is_image_task = any(word in instructions.lower() for word in [ "image", "picture", "photo", "ocr", "extract from image" ]) print(f"\n>>>>> TASK TYPE: {'IMAGE TASK' if is_image_task else 'OTHER TASK'}") if is_image_task: print("\n>>>>> ROUTING TO IMAGE AGENT") chosen_agent = gpt_image_agent else: print("\n>>>>> USING LLM FOR AGENT SELECTION") analysis_prompt = f"Based on: '{instructions}', which agent? (search/file/arxiv/image/audio/youtube)" agent_decision = marvin.run( analysis_prompt, agents=[answer_agent], context={"task": instructions} ).strip().lower() print(f"\n>>>>> AGENT DECISION: {agent_decision}") agent_map = { "search": search_agent, "file": file_processing_agent, "arxiv": arxiv_agent, "image": gpt_image_agent, "audio": audio_transcription_agent, "youtube": youtube_download_agent } chosen_agent = None for key, agent in agent_map.items(): if key in agent_decision: chosen_agent = agent break if not chosen_agent: print("\n>>>>> DEFAULT TO ANSWER AGENT") chosen_agent = answer_agent print(f"\n>>>>> SELECTED AGENT: {chosen_agent.name}") # Prepare context modified_context = { "image_path": context.get("fileinfo"), "Q": instructions, "instructions": instructions, "file_path": context.get("fileinfo"), "task": task } print(f"\n>>>>> MODIFIED CONTEXT: {modified_context}") try: print(f"\n>>>>> EXECUTING AGENT: {chosen_agent.name}") print(f"WITH INSTRUCTIONS: {instructions}") print(f"WITH CONTEXT: {modified_context}") result = marvin.run( instructions, agents=[chosen_agent], context=modified_context ) print(f"\n>>>>> EXECUTION RESULT: {result}") return result except Exception as e: print(f"\n>>>>> ERROR IN ORCHESTRATION: {str(e)}") return f"Error in task orchestration: {str(e)}" @fn def gpt_4o_image_function(image_path: str, Q: str) -> str: print("\n>>>>> IMAGE FUNCTION START <<<<<") print(f"IMAGE PATH: {image_path}") print(f"QUESTION: {Q}") context = marvin.context.get() instructions = context.get("instructions", Q) print(f"\n>>>>> PROCESSING WITH INSTRUCTIONS: {instructions}") return get_image_description_gpt4o(image_path, Q, instructions) def get_image_description_gpt4o(image_path: str, Q: str, instructions: str) -> str: print("\n>>>>> GPT-4 VISION START <<<<<") print(f"IMAGE PATH: {image_path}") print(f"QUESTION: {Q}") print(f"INSTRUCTIONS: {instructions}") print(f"FILE EXISTS: {os.path.exists(image_path)}") try: with open(image_path, "rb") as image_file: image_data = image_file.read() print("\n>>>>> IMAGE FILE READ SUCCESS") response = client.chat.completions.create( model="gpt-4o", messages=[{ "role": "user", "content": [ {"type": "text", "text": f"Complete this specific task for the image: {instructions}"}, {"type": "image_url", "image_url": {
"url": f"data:image/jpeg;base64,{base64.b64encode(image_data).decode('utf-8')}" }} ] }] ) print(f"\n>>>>> GPT-4 API RESPONSE: {response}") return response.choices[0].message.content except FileNotFoundError: print(f"\n>>>>> ERROR: File not found at {image_path}") return f"Error: Image file not found at {image_path}" except Exception as e: print(f"\n>>>>> ERROR in GPT-4 processing: {str(e)}") return f"Error querying GPT-4o: {e}" # Main workflow if name == "__main__": with marvin.Thread() as thread: print("\n>>>>> WORKFLOW START <<<<<") question = dataset[20]['Question'] fileinfo = dataset[20]['file_path'] print(f"\n>>>>> INITIAL DATA:") print(f"QUESTION: {question}") print(f"FILE PATH: {fileinfo}") plan = marvin.plan(question) print(f"\n>>>>> EXECUTION PLAN: {plan}") outputs = [] for i, task in enumerate(plan, 1): print(f"\n>>>>> EXECUTING TASK {i} <<<<<") print(f"TASK INSTRUCTIONS: {task.instructions}") try: res = marvin.run( task.instructions, agents=[orchestration_agent], context={ "question": question, "fileinfo": fileinfo, "task": task, "file_path": fileinfo } ) print(f"\n>>>>> TASK {i} RESULT: {res}") outputs.append(res) except Exception as e: print(f"\n>>>>> ERROR IN TASK {i}: {str(e)}") ``` This version: 1. Uses simple print statements with clear markers (>>>>>) 2. Shows each major step in the process 3. Prints important data at each step 4. Makes it easy to follow the execution flow When you run this, you should see a clear sequence of steps with ">>>>>>" markers. This will help you: 1. See which parts of the code are being executed 2. Track the data flow 3. Identify where any issues occur 4. Verify if the image processing is being triggered Try running this version and let me know if you can see the debug output now. If you're still not seeing the output, we might need to try a different approach or check if there's something blocking the print statements.
s
@Marvin I passed the gpt-image function as a tool to orchestration_agent, but still get this output Agent "orchestrator" (1396b4fc) ────────────────────────────────────────────────────────────────╮ │ │ │ Tool: get_image_description_gpt4o │ │ Status: │ │ Input { │ │ 'image_path': │ │ 'C:\\Users\\a\\.cache\\huggingface\\hub\\datasets--gaia-benchmark--GAIA\\snaps… │ │ 'Q': 'Identify the red and green numbers in the image.' │ │ } │ │ Output: "I'm unable to directly analyze or view images. However, I can help guide you on how │ │ to identify red and green numbers in an image using image processing software or │ │ code. If you have access to an image processing tool like Adobe Photoshop or a coding │ │ environment like Python with libraries such as OpenCV or PIL, you can use color │ │ filtering to isolate and identify red and green elements in the image. Let me know │ │ how you would like to proceed, and I can provide more detailed instructions!" │ │ │ what can be the problem?
m
thought for 22.5 seconds
Ah, I see the issue now. The problem is that the GPT-4 Vision function is being passed directly as a tool instead of being wrapped in an agent. Also, the orchestration agent is trying to use the function directly instead of routing through the image agent. Let's fix this:
Copy code
python
# First, define the image processing function
@fn
def gpt_4o_image_function(image_path: str, Q: str) -> str:
    print("\n>>>>> IMAGE FUNCTION START <<<<<")
    print(f"IMAGE PATH: {image_path}")
    print(f"QUESTION: {Q}")
    
    try:
        with open(image_path, "rb") as image_file:
            image_data = image_file.read()
            print("Image file read successfully")

        response = client.chat.completions.create(
            model="gpt-4o",
            messages=[{
                "role": "user",
                "content": [
                    {"type": "text", "text": f"Complete this specific task for the image: {Q}"},
                    {"type": "image_url", "image_url": {
                        "url": f"data:image/jpeg;base64,{base64.b64encode(image_data).decode('utf-8')}"
                    }}
                ]
            }]
        )
        return response.choices[0].message.content

    except Exception as e:
        print(f"Error: {str(e)}")
        return f"Error processing image: {str(e)}"

# Define the image agent properly
gpt_image_agent = marvin.Agent(
    name="gpt-image",
    instructions="""You are an image analysis specialist that uses GPT-4 Vision to:
    1. Process and analyze images
    2. Extract text and numbers from images
    3. Identify colors and patterns
    4. Return specific information as requested
    
    Always use the provided image processing function to analyze images.""",
    tools=[gpt_4o_image_function]
)

# Modify the orchestration agent
@fn
def orchestration_agent(task: dict, context: dict) -> str:
    print("\n>>>>> ORCHESTRATION START <<<<<")
    print(f"TASK RECEIVED: {task}")
    print(f"CONTEXT RECEIVED: {context}")

    instructions = task.get("instructions") if isinstance(task, dict) else str(task)
    
    # Check for image task
    is_image_task = any(word in instructions.lower() for word in [
        "image", "picture", "photo", "ocr", "extract from image", "numbers in the image"
    ])

    if is_image_task:
        print("\n>>>>> ROUTING TO IMAGE AGENT")
        # Use the image agent instead of the raw function
        result = marvin.run(
            instructions,
            agents=[gpt_image_agent],  # Use the agent, not the function
            context={
                "image_path": context.get("fileinfo"),
                "Q": instructions
            }
        )
        return result

    # ... rest of the orchestration logic ...

# Main workflow
if __name__ == "__main__":
    with marvin.Thread() as thread:
        question = dataset[20]['Question']
        fileinfo = dataset[20]['file_path']
        
        print(f"\n>>>>> PROCESSING:")
        print(f"QUESTION: {question}")
        print(f"FILE PATH: {fileinfo}")
        
        plan = marvin.plan(question)
        outputs = []
        
        for task in plan:
            print(f"\n>>>>> EXECUTING TASK: {task.instructions}")
            
            res = marvin.run(
                task.instructions,
                agents=[orchestration_agent],
                context={
                    "question": question,
                    "fileinfo": fileinfo,
                    "task": task
                }
            )
            outputs.append(res)
Key changes: 1. Made sure the GPT-4 Vision function is properly wrapped in an agent 2. Modified the orchestration agent to use the image agent instead of trying to use the function directly 3. Ensured proper context passing for image processing 4. Added more specific image-related keywords for task detection The error you're seeing suggests that: 1. Either the function is being called directly instead of through the agent
2. Or the GPT-4 Vision capabilities aren't properly initialized Could you also verify: 1. Is your OpenAI client properly configured with the correct model access? 2. Are you using the correct model name for GPT-4 Vision? 3. Is the image file path correct and accessible? Try this modified version and let me know if you still see the same error. If you do, we might need to check your OpenAI API configuration or the specific model being used.
s
@Marvin it is okay, i intentionally pass it as a tool to see how it works
m
thought for 13.6 seconds
Ah, I understand now! You were experimenting with how tools work directly in the orchestration agent. This is actually a good way to understand the difference between: 1. Passing a function as a direct tool:
Copy code
python
orchestration_agent = marvin.Agent(
    name="orchestrator",
    tools=[get_image_description_gpt4o]  # Direct function as tool
)
vs. 2. Using a specialized agent with tools:
Copy code
python
gpt_image_agent = marvin.Agent(
    name="gpt-image",
    tools=[gpt_4o_image_function]
)

orchestration_agent = marvin.Agent(
    name="orchestrator",
    tools=[...]  # Other tools
)
The output you got shows exactly how Marvin handles direct tool calls:
Copy code
Agent "orchestrator" (1396b4fc)
Tool:    get_image_description_gpt4o
Status:  :white_check_mark:
Input    {
    'image_path': 'C:\\Users\\a\\.cache\\huggingface\\hub\\datasets--gaia-benchmark--GAIA\\snaps…
    'Q': 'Identify the red and green numbers in the image.'
}
This demonstrates that: 1. The tool is called directly with the provided parameters 2. There's no agent-level instruction processing 3. The function receives raw inputs without any agent-level context or processing This is useful for understanding how Marvin's tool execution works at a basic level. For production use, you'd typically want to use the agent-based approach as it provides: - Better context handling - More sophisticated instruction processing - Proper error handling - Chain of thought reasoning Would you like to experiment with any other aspects of tool vs. agent behavior?
s
@Marvin can you give details of how the marvin.plan() works? what is the prompt they used to breaking tasks into smaller ones?
m
thought for 43.5 seconds
Based on the research and function signature, here's a detailed explanation of how
marvin.plan()
works: 1. Core Functionality -
marvin.plan()
is a function designed to break down complex objectives into smaller, manageable tasks - It returns a list of
Task
objects that represent discrete steps needed to achieve the main objective 2. Key Parameters - `instructions`: The main objective or goal you want to break down - `agent`: Optional custom agent to handle the planning (if not specified, uses default) - `thread`: Optional conversation thread for context - `context`: Additional contextual information as a dictionary - `available_agents`: List of agents that can be used for task execution - `tools`: List of functions that can be used during task execution - `parent_task`: Optional parent task if this is part of a larger task hierarchy 3. Planning Process The function uses a prompt-based approach to break down tasks. The planner is instructed to: - Create tasks that represent discrete, observable goals - Avoid tasks that are too small (which could create unnecessary overhead) - Avoid tasks that are too large (which would be difficult to manage) - Ensure each task is clearly defined and actionable 4. Usage Example
Copy code
python
from marvin import plan

tasks = plan(
    instructions="Build a data pipeline that processes customer data",
    context={"data_source": "CSV files", "output_format": "PostgreSQL"}
)

# Each returned task will have properties like:
# - description
# - status
# - dependencies
# - etc.
5. Async Support - The function also supports async operations for use in asynchronous workflows You can find more detailed documentation about
marvin.plan()
at: - https://github.com/PrefectHQ/marvin/tree/main/docs/functions/plan.mdx - https://askmarvin.ai/api-reference/marvin-fns-plan Let me know if you'd like to see specific examples of how to use
marvin.plan()
in different scenarios or if you have any other questions!
s
@Marvin how to change the default LLM in marvin agents
m
thought for 57.9 seconds
Let me provide a clear guide on how to change the default LLM in Marvin agents: 1. Global Configuration
Copy code
python
import marvin

# Change the default model for all agents
marvin.defaults.model = "openai:gpt-4"  # or any other supported model
2. Per-Agent Configuration
Copy code
python
from marvin import Agent

# Create an agent with a specific model
agent = Agent(
    model="openai:gpt-4",  # Specify the model
    model_settings={
        "temperature": 0.7,  # Optional: Adjust model parameters
        "max_tokens": 1000
    }
)
3. Available Model Formats The model string should be in the format:
provider:model_name
Examples:
Copy code
python
# OpenAI models
"openai:gpt-4"
"openai:gpt-3.5-turbo"
4. Setting OpenAI API Key Before using any OpenAI models, make sure to set your API key:
Copy code
bash
export OPENAI_API_KEY="your-api-key"
Or in Python:
Copy code
python
import os
os.environ["OPENAI_API_KEY"] = "your-api-key"
5. Model Settings You can customize various model parameters:
Copy code
python
model_settings = {
    "temperature": 0.7,      # Controls randomness (0.0 to 1.0)
    "max_tokens": 1000,      # Maximum tokens in response
    "top_p": 1.0,           # Nuclear sampling parameter
    "frequency_penalty": 0,  # Penalty for frequent token use
    "presence_penalty": 0    # Penalty for new token introduction
}

agent = Agent(model="openai:gpt-4", model_settings=model_settings)
Key Points to Remember: - The default model is OpenAI's GPT-4 - Changes to
marvin.defaults.model
affect all agents created afterward - Individual agents can override the default settings - Always ensure you have the appropriate API keys set up for the model provider you're using You can find more detailed documentation about LLM configuration at: - https://github.com/PrefectHQ/marvin/tree/main/docs/guides/configure-llms.mdx - https://askmarvin.ai/api-reference/marvin-utilities-models Let me know if you need any clarification or have questions about specific model configurations!
s
@Marvin how to install marvin
m
thought for 24.5 seconds
Let me provide you with a clear, step-by-step guide to installing Marvin: 1. Prerequisites - Python 3.10 or higher - An OpenAI API key (or API key from another supported LLM provider) 2. Installation Methods Using pip:
Copy code
bash
pip install marvin
Using uv (a faster alternative to pip):
Copy code
bash
# Install uv first if you haven't already
curl -LsSf <https://astral.sh/uv/install.sh> | sh

# Then install Marvin
uv pip install marvin
3. Set up API Key After installation, set up your OpenAI API key (required for using the default LLM):
Copy code
bash
export OPENAI_API_KEY="your-api-key"
4. Verify Installation You can verify the installation by running Python and importing Marvin:
Copy code
python
import marvin
5. Optional: Install in a Virtual Environment It's recommended to install Marvin in a virtual environment:
Copy code
bash
# Create a virtual environment
python -m venv venv

# Activate it (on Unix/macOS)
source venv/bin/activate

# Activate it (on Windows)
.\venv\Scripts\activate

# Install Marvin
pip install marvin
6. Additional Installation Options - To install with specific extras or development dependencies:
Copy code
bash
pip install "marvin[dev]"  # Install with development dependencies
After installation, you can start using Marvin in your Python environment. Here's a quick test to ensure everything is working:
Copy code
python
from marvin import ai_fn

@ai_fn
def greet(name: str) -> str:
    """Generate a friendly greeting."""
    pass

# Test the function
print(greet("World"))
If you encounter any issues during installation: 1. Make sure you're using Python 3.10 or higher 2. Verify your OpenAI API key is correctly set 3. Check that all dependencies were installed correctly You can find more detailed installation instructions in the documentation at: https://github.com/PrefectHQ/marvin/tree/main/docs/installation.mdx Let me know if you need help with any specific installation scenarios or encounter any issues!
s
@Marvin how i can integrate memory in my agents?
m
thought for 43.2 seconds
I notice there might be some confusion here. In Prefect 3.x, the concept of "agents" has been replaced by "workers", which is a significant architectural change. However, I want to make sure I understand your question correctly: 1. Are you referring to memory persistence for AI/ML agents (as in autonomous agents in your code), or 2. Were you asking about Prefect agents specifically? If you're working with AI/ML agents and want to implement memory persistence, you can use Prefect's caching capabilities to store and retrieve agent state. Here's a general approach: 1. Use cache policies to store agent state 2. Leverage result storage for persistent memory Let me know which scenario you're interested in, and I can provide more specific guidance. Also, if you're currently using Prefect 2.x, please let me know, as the implementation details would be slightly different. For the most relevant solution, could you please clarify: 1. Are you working with AI/ML agents or were you asking about Prefect infrastructure? 2. Which version of Prefect are you using (2.x or 3.x)? 3. What type of memory persistence do you need (short-term, long-term, distributed)?
s
@Marvin I am asking about marvin agents
m
thought for 39.9 seconds
Great! For Marvin agents, you can implement memory using Marvin's built-in memory capabilities. Here's how you can integrate memory into your Marvin agents: 1. Basic Memory Setup:
Copy code
python
from marvin import Agent, Memory

# Create a memory instance
memory = Memory()

# Create an agent with memory
agent = Agent(
    name="MyAgent",
    memories=[memory]
)
2. Storing Information:
Copy code
python
# Store information in memory
await memory.store("The user prefers Python over JavaScript")

# Store multiple facts
await memory.store([
    "The user is working on a data pipeline",
    "The user's name is Alice"
])
3. Retrieving Information:
Copy code
python
# Retrieve relevant memories
relevant_memories = await memory.recall("What does the user prefer?")
4. Using Memory in Conversations:
Copy code
python
from marvin import Agent, Memory, assistant

@assistant()
async def coding_assistant(message: str, memory: Memory):
    # Recall relevant information before responding
    context = await memory.recall(message)
    
    # Use the context in your response
    response = f"Based on what I remember: {context}\n"
    response += "Here's my response to your question..."
    
    # Store new information from the conversation
    await memory.store(f"User asked about: {message}")
    
    return response
Key Features: - Vector Database Backend: Marvin uses a vector database for efficient storage and retrieval - Semantic Search: Memory recall is based on semantic similarity, not just exact matches - Persistence: Memories persist across different sessions - Context-Aware: Can retrieve relevant information based on the current conversation Best Practices: 1. Store specific, actionable information rather than entire conversations 2. Use clear, consistent formatting for stored memories 3. Consider implementing memory cleanup strategies for older or less relevant information 4. Use memory.recall() with specific queries to get the most relevant information Would you like me to provide more specific examples for any of these aspects, or do you have a particular use case in mind for the memory system?
s
@Marvin can I use from langchain_core.tools import BaseTool in my marvin agent code?
m
thought for 55.6 seconds
Based on my research, while you can technically import
BaseTool
from
langchain_core.tools
, integrating it directly with Marvin agents isn't the recommended approach. Instead, Marvin has its own tools system that's designed to work with its agent architecture. Here's what you should consider: 1. Marvin's Native Tools Approach:
Copy code
python
from marvin import tool

@tool
async def my_custom_tool(input_parameter: str) -> str:
    """
    Description of what this tool does
    """
    # Your tool implementation here
    return result
2. If you need LangChain functionality, you have two main options: a. Wrap LangChain tools in Marvin tools:
Copy code
python
   from marvin import tool
   from langchain_core.tools import BaseTool
   
   # Wrap your LangChain tool functionality in a Marvin tool
   @tool
   async def langchain_wrapper(input_parameter: str) -> str:
       """
       Description of what this wrapped tool does
       """
       # Implement your LangChain tool logic here
       # but wrap it in Marvin's tool decorator
       return result
b. Use Marvin's native capabilities that might provide similar functionality to what you're trying to achieve with LangChain tools. Best Practices: 1. Start with Marvin's native tools system first 2. Only integrate LangChain tools if there's specific functionality you need that isn't available in Marvin 3. When wrapping LangChain tools, make sure to handle async/sync compatibility properly 4. Document clearly when you're using wrapped external tools Would you like to: 1. Share what specific LangChain tool functionality you're trying to use? This would help me suggest the best Marvin-native alternative. 2. See an example of how to implement a specific type of tool in Marvin? 3. Learn more about Marvin's native tools system?
s
@Marvin I have a question. I implemented an agentic system using marvin. i have added an orchestrator agent with some tools. however the tools are functions that has some input arguments. how it understands to pass those to it
m
thought for 49.7 seconds
Let me explain how Marvin handles tool arguments in an agentic system: 1. Tool Definition When you create a tool, you define it as a regular Python function with arguments. Here's an example:
Copy code
python
from marvin import tool

@tool
def calculate_metrics(data: list[float], threshold: float = 0.5) -> dict:
    """
    Calculate metrics for a list of numbers based on a threshold.
    
    Args:
        data: List of numerical values to analyze
        threshold: Cutoff value for analysis (default: 0.5)
    
    Returns:
        Dictionary containing calculated metrics
    """
    # Function implementation
    pass
2. How Marvin Understands Arguments Marvin uses several pieces of information to understand how to pass arguments to your tools: - Type Hints: The type annotations (like
list[float]
,
float
) help Marvin understand what kind of data to pass - Docstrings: The documentation helps Marvin understand the purpose and expected format of each argument - Function Signature: Marvin can inspect the function to see required vs optional arguments 3. Agent Usage When an agent needs to use a tool, it: - Analyzes the tool's requirements based on the function signature - Determines what arguments are needed - Formats the available data to match the expected types - Calls the function with appropriate arguments Here's an example of how to set this up:
Copy code
python
from marvin import Agent
from prefect import flow

# Define your tools
@tool
def process_data(input_text: str, max_length: int = 100) -> str:
    """
    Process input text with a maximum length constraint.
    
    Args:
        input_text: The text to process
        max_length: Maximum allowed length
    """
    return input_text[:max_length]

# Create an agent with tools
agent = Agent(
    tools=[process_data],
    instructions="You are an agent that processes text data."
)

@flow
def process_text_flow(text: str):
    # The agent will automatically understand how to use the tool
    # and pass the appropriate arguments
    result = agent.run(f"Process this text: {text}")
    return result
4. Best Practices for Tool Arguments: - Always use type hints for your arguments - Provide clear, detailed docstrings - Use descriptive parameter names - Set sensible defaults for optional arguments - Keep the function signature simple and focused 5. Troubleshooting Tips: If your agent isn't passing arguments correctly: - Check that your type hints are correct - Verify your docstrings are clear and detailed - Ensure the agent has the proper context to understand when and how to use the tool - Consider adding example usage in the docstring Remember that Marvin's ability to understand and use your tools depends heavily on how well they are documented and typed. The more information you provide through type hints and docstrings, the better Marvin can understand how to use the tools correctly. Would you like me to see any specific examples of tool implementations you're working with? That would help me provide more targeted advice for your use case.
s
@Marvin how to change the model for agents?
m
thought for 61.6 seconds
Let me explain how to change the model for Marvin agents. There are several ways to do this: 1. Direct Model Specification When creating an agent, you can specify the model directly:
Copy code
python
from marvin import Agent

# Using OpenAI's GPT-4
agent = Agent(
    model="openai:gpt-4",
    instructions="Your agent instructions here"
)

# Using GPT-3.5-turbo
agent = Agent(
    model="openai:gpt-3.5-turbo",
    instructions="Your agent instructions here"
)

# Using Anthropic's Claude
agent = Agent(
    model="anthropic:claude-2",
    instructions="Your agent instructions here"
)
2. With Model Settings You can also specify model settings along with the model:
Copy code
python
agent = Agent(
    model="openai:gpt-4",
    model_settings={
        "temperature": 0.7,
        "max_tokens": 500,
        "top_p": 1.0
    },
    instructions="Your agent instructions here"
)
3. Change Default Model Globally You can set the default model for all agents in your application:
Copy code
python
import marvin

# Set default model for all agents
marvin.settings.model = "openai:gpt-4"
4. Supported Model Providers Marvin supports several LLM providers through Pydantic AI: - OpenAI (
openai:
) - gpt-4 - gpt-3.5-turbo - Anthropic (
anthropic:
) - claude-2 - claude-instant - Cohere (
cohere:
) - Google (
google:
) - Bedrock (
bedrock:
) - Groq (
groq:
) - Mistral (
mistral:
) 5. Environment Configuration Remember to set up your API keys in environment variables for the provider you're using:
Copy code
bash
# For OpenAI
export OPENAI_API_KEY=your_api_key

# For Anthropic
export ANTHROPIC_API_KEY=your_api_key

# For other providers, check their specific environment variable requirements
6. Advanced Configuration For more advanced configurations, you can use the provider-specific model classes:
Copy code
python
from pydantic_ai.models import OpenAIModel

custom_model = OpenAIModel(
    model="gpt-4",
    temperature=0.7,
    max_tokens=500
)

agent = Agent(
    model=custom_model,
    instructions="Your agent instructions here"
)
Important Notes: - Make sure you have the appropriate API keys set up for the model provider you choose - Different models may have different capabilities and costs - Some models might require additional configuration or dependencies - Performance and response quality can vary between models Would you like me to provide more specific examples for any particular model provider or configuration scenario you're interested in?
s
@Marvin in a model from a cluster in which i have access through client = openai.client(base_url="http://127.0 ...., api_key = "SS") how to use this model in the agent
m
thought for 41.7 seconds
Based on your setup with a custom OpenAI-compatible endpoint, here's how you can configure your Marvin agent to use it. There are a couple of approaches: 1. Using Environment Variables (Recommended Approach):
Copy code
python
import os
from marvin import Agent

# Set the environment variables
os.environ["OPENAI_API_BASE"] = "<http://127.0.0.1:your_port>"  # Your base URL
os.environ["OPENAI_API_KEY"] = "SS"  # Your API key

# Create the agent (it will automatically use the environment variables)
agent = Agent(
    model="openai:your-model-name",  # Replace with your model name
    instructions="Your instructions here"
)
2. Using Custom OpenAI Configuration:
Copy code
python
from marvin import Agent
from pydantic_ai.models import OpenAIModel
from pydantic_ai.providers import OpenAIProvider
import openai

# Create custom OpenAI client
client = openai.Client(
    base_url="<http://127.0.0.1:your_port>",
    api_key="SS"
)

# Create custom OpenAI provider
provider = OpenAIProvider(openai_client=client)

# Create custom model configuration
model = OpenAIModel(
    model="your-model-name",  # Replace with your model name
    provider=provider
)

# Create the agent with the custom model
agent = Agent(
    model=model,
    instructions="Your instructions here"
)
3. Alternative Configuration Using Settings:
Copy code
python
import marvin
from marvin import Agent

# Configure Marvin settings
marvin.settings.openai.api_base = "<http://127.0.0.1:your_port>"
marvin.settings.openai.api_key = "SS"

# Create the agent
agent = Agent(
    model="openai:your-model-name",  # Replace with your model name
    instructions="Your instructions here"
)
Important Notes: - Replace
your_port
with the actual port number from your base URL - Replace
your-model-name
with the actual model name your endpoint is serving - Make sure your custom endpoint is fully compatible with the OpenAI API format - If your endpoint requires any additional headers or authentication, you might need to configure those as well To test if it's working:
Copy code
python
# Test the agent
result = agent.run("Hello, are you connected to the correct model?")
print(result)
If you encounter any issues, you might need to: 1. Verify the endpoint is accessible 2. Check if your model name matches exactly what the endpoint expects 3. Ensure the API key format is correct 4. Verify any additional headers or authentication requirements Would you like me to provide more specific guidance based on your particular setup or are you encountering any specific errors?
s
@Marvin how to change the model for marvin.plan()
m
thought for 63.2 seconds
For
marvin.plan()
, you can change the model in several ways: 1. Using Environment Variables (Recommended):
Copy code
python
import os
import marvin

# Set environment variables before using plan()
os.environ["MARVIN_AGENT_MODEL"] = "openai:gpt-4"  # or your desired model
os.environ["OPENAI_API_KEY"] = "your-api-key"

# Now use plan()
result = marvin.plan("Your planning prompt here")
2. Using Marvin Settings:
Copy code
python
import marvin

# Configure settings before using plan()
marvin.settings.model = "openai:gpt-3.5-turbo"
marvin.settings.model_settings = {
    "temperature": 0.7,
    "max_tokens": 500
}

result = marvin.plan("Your planning prompt here")
3. For Custom OpenAI-compatible Endpoints (like your case):
Copy code
python
import marvin
import os

# Set custom endpoint
os.environ["OPENAI_API_BASE"] = "<http://127.0.0.1:your_port>"
os.environ["OPENAI_API_KEY"] = "SS"
os.environ["MARVIN_AGENT_MODEL"] = "your-model-name"

# Use plan()
result = marvin.plan("Your planning prompt here")
4. Using a Configuration File: Create a
.env
file in your project root:
Copy code
env
MARVIN_AGENT_MODEL=your-model-name
OPENAI_API_BASE=<http://127.0.0.1:your_port>
OPENAI_API_KEY=SS
Then in your code:
Copy code
python
from dotenv import load_dotenv
import marvin

load_dotenv()
result = marvin.plan("Your planning prompt here")
5. Advanced Configuration with Custom Provider:
Copy code
python
import marvin
from pydantic_ai.models import OpenAIModel
from pydantic_ai.providers import OpenAIProvider
import openai

# Create custom client
client = openai.Client(
    base_url="<http://127.0.0.1:your_port>",
    api_key="SS"
)

# Configure provider and model
provider = OpenAIProvider(openai_client=client)
model = OpenAIModel(
    model="your-model-name",
    provider=provider
)

# Set as default model
marvin.settings.model = model

# Use plan()
result = marvin.plan("Your planning prompt here")
Important Notes: - Make sure to set up your configuration before calling
marvin.plan()
- The model name should match exactly what your endpoint expects - If you're using a custom endpoint, ensure it's fully compatible with the OpenAI API format - You might need to adjust the temperature and other settings based on your specific needs To verify the configuration:
Copy code
python
# Test the configuration
print(f"Current model: {marvin.settings.model}")
print(f"Current model settings: {marvin.settings.model_settings}")
Would you like me to provide more specific guidance based on your particular setup or are you encountering any specific issues?
s
@Marvin marvin.settings.model = model is wrong. and cannot use this.
m
thought for 74.1 seconds
You're absolutely right that
marvin.settings.model = model
is incorrect. For
marvin.plan()
, the primary way to configure a custom endpoint is through environment variables. Here's the correct approach: 1. Using Environment Variables (Most Reliable Method):
Copy code
python
import os
import marvin

# Set these before using marvin.plan()
os.environ["OPENAI_API_BASE"] = "<http://127.0.0.1:your_port>"
os.environ["OPENAI_API_KEY"] = "SS"

# Use plan()
result = marvin.plan("Your planning prompt here")
2. Using a .env file: Create a
.env
file:
Copy code
env
OPENAI_API_BASE=<http://127.0.0.1:your_port>
OPENAI_API_KEY=SS
Then in your code:
Copy code
python
from dotenv import load_dotenv
import marvin

load_dotenv()
result = marvin.plan("Your planning prompt here")
If you're encountering any specific errors or issues with these approaches, please let me know and I can help troubleshoot. Also, if you're using a specific model name from your custom endpoint, you might need to specify that as well through the appropriate environment variable. Would you like me to provide more specific guidance based on your particular setup or any errors you're seeing?
s
@Marvin getting opeanai.APIConnectionError:connectionerror
m
thought for 9.7 seconds
This error typically occurs when there's an issue connecting to the OpenAI-compatible endpoint. Let's troubleshoot this connection error. First, let's verify a few common causes: 1. Check if the base URL format is correct Make sure you're using the complete URL with the correct protocol (http or https). For example:
Copy code
python
import os

# Make sure the URL format is exactly correct - common issues include:
# - Missing http:// or https://
# - Wrong port number
# - Missing or extra slashes
os.environ["OPENAI_API_BASE"] = "<http://127.0.0.1:1234>"  # adjust port number
os.environ["OPENAI_API_KEY"] = "SS"
2. Verify the endpoint is running Before using Marvin, try testing the connection directly with the OpenAI client:
Copy code
python
import openai

client = openai.Client(
    base_url="<http://127.0.0.1:1234>",  # your actual port
    api_key="SS"
)

# Test the connection
try:
    # Basic test call
    response = client.chat.completions.create(
        model="your-model-name",
        messages=[{"role": "user", "content": "Hello"}]
    )
    print("Connection successful!")
except Exception as e:
    print(f"Connection failed: {str(e)}")
3. Check for SSL/HTTPS issues If you're using a self-hosted endpoint without SSL, you might need to disable SSL verification:
Copy code
python
import os
os.environ["OPENAI_API_BASE"] = "<http://127.0.0.1:1234>"
os.environ["OPENAI_API_KEY"] = "SS"
# If needed for non-SSL endpoints
os.environ["OPENAI_VERIFY_SSL"] = "false"
Could you please provide: 1. The exact error message you're getting? 2. Can you confirm if the endpoint is accessible directly using the OpenAI client (without Marvin)? 3. What is the exact URL format you're using? (you can obscure sensitive parts) This information would help me provide a more targeted solution for your specific setup.
s
@Marvin I want to run the test on the other llms and evaluate my agentic system. how to do that?
m
thought for 86.0 seconds
I'll show you how to systematically test and evaluate your agentic system across different LLMs. Here's a comprehensive approach: 1. Create an Evaluation Framework
Copy code
python
import marvin
from typing import Dict, List
import time
import json
from datetime import datetime

class AgentEvaluator:
    def __init__(self, test_cases: List[dict], models: List[str]):
        self.test_cases = test_cases
        self.models = models
        self.results = {}
        
    def run_evaluation(self):
        for model in self.models:
            self.results[model] = self._evaluate_model(model)
            
    def _evaluate_model(self, model_identifier: str) -> Dict:
        results = []
        
        # Configure environment for the model
        self._setup_model_env(model_identifier)
        
        for test_case in self.test_cases:
            try:
                start_time = time.time()
                
                # Create agent with the specific model
                agent = marvin.Agent(
                    model=model_identifier,
                    instructions=test_case.get('instructions', "You are a helpful AI assistant.")
                )
                
                # Run the test
                response = agent.run(test_case['input'])
                
                end_time = time.time()
                
                result = {
                    'test_case_id': test_case['id'],
                    'input': test_case['input'],
                    'output': response,
                    'execution_time': end_time - start_time,
                    'success': True,
                    'error': None
                }
                
            except Exception as e:
                result = {
                    'test_case_id': test_case['id'],
                    'input': test_case['input'],
                    'output': None,
                    'execution_time': None,
                    'success': False,
                    'error': str(e)
                }
                
            results.append(result)
            
        return results
    
    def _setup_model_env(self, model_identifier):
        # Configure environment variables based on model
        if model_identifier.startswith('openai:'):
            import os
            os.environ["OPENAI_API_KEY"] = "your-key"
        # Add other model configurations as needed
    
    def save_results(self, filename=None):
        if filename is None:
            filename = f"agent_evaluation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
        
        with open(filename, 'w') as f:
            json.dump(self.results, f, indent=2)
            
    def print_summary(self):
        for model, results in self.results.items():
            success_rate = len([r for r in results if r['success']]) / len(results)
            avg_time = sum(r['execution_time'] for r in results if r['success']) / len(results)
            
            print(f"\nModel: {model}")
            print(f"Success Rate: {success_rate*100:.2f}%")
            print(f"Average Execution Time: {avg_time:.2f} seconds")
2. Define Test Cases
Copy code
python
test_cases = [
    {
        'id': 1,
        'input': "Analyze this data and create a summary report",
        'instructions': "You are a data analysis expert.",
        'expected_output_type': 'report',
    },
    {
        'id': 2,
        'input': "Create a marketing strategy for a new product",
        'instructions': "You are a marketing strategist.",
        'expected_output_type': 'strategy',
    },
    # Add more test cases
]

# Define models to test
models_to_test = [
    "openai:gpt-4",
    "openai:gpt-3.5-turbo",
    "anthropic:claude-2",
    # Add your custom endpoint
    "your-custom-model"  # Configure this appropriately
]
3. Run the Evaluation ```python # Initialize and run evaluator evaluator = AgentEvaluator(test_cases, models_to_test) evaluator.run_evaluation() # Save results evaluator.save_results()
# Print summary evaluator.print_summary()
Copy code
4. *Add Custom Metrics*
```python
from typing import Callable

class MetricsCalculator:
    @staticmethod
    def response_length(response: str) -> int:
        return len(response.split())
    
    @staticmethod
    def contains_key_elements(response: str, required_elements: List[str]) -> float:
        found = sum(1 for elem in required_elements if elem.lower() in response.lower())
        return found / len(required_elements)

class EnhancedAgentEvaluator(AgentEvaluator):
    def __init__(self, test_cases: List[dict], models: List[str], metrics: Dict[str, Callable] = None):
        super().__init__(test_cases, models)
        self.metrics = metrics or {
            'response_length': MetricsCalculator.response_length,
        }
    
    def _evaluate_model(self, model_identifier: str) -> Dict:
        results = super()._evaluate_model(model_identifier)
        
        # Add metrics calculations
        for result in results:
            if result['success']:
                result['metrics'] = {
                    metric_name: metric_func(result['output'])
                    for metric_name, metric_func in self.metrics.items()
                }
        
        return results
5. Use the Enhanced Evaluator
Copy code
python
# Define custom metrics
custom_metrics = {
    'response_length': MetricsCalculator.response_length,
    'completeness': lambda x: MetricsCalculator.contains_key_elements(
        x, ['analysis', 'recommendation', 'conclusion']
    )
}

# Initialize enhanced evaluator
evaluator = EnhancedAgentEvaluator(
    test_cases=test_cases,
    models=models_to_test,
    metrics=custom_metrics
)

# Run evaluation
evaluator.run_evaluation()
6. For Your Custom Endpoint
Copy code
python
import os

# Configure your custom endpoint before running evaluation
os.environ["OPENAI_API_BASE"] = "<http://127.0.0.1:your_port>"
os.environ["OPENAI_API_KEY"] = "SS"

# Add your custom model to the test
models_to_test = [
    "your-model-name",  # Your custom model
    "openai:gpt-4",     # For comparison
    # Add other models as needed
]
This framework allows you to: - Test multiple models systematically - Collect performance metrics - Compare results across different models - Save results for later analysis - Add custom metrics for evaluation Would you like me to explain any part in more detail or help you set up specific test cases for your agentic system?
s
@Marvin this is my code: but doens't work in marvin.plan() from openai import AsyncOpenAI from pydantic_ai.models.openai import OpenAIModel from pydantic_ai.providers.openai import OpenAIProvider from marvin import plan from marvin.settings import settings import asyncio # Set up GPT-4o (from OpenRouter or OpenAI) client = AsyncOpenAI( base_url="http:/", # " api_key="EMPTY" ) model = OpenAIModel( model_name="default", # use the correct OpenRouter or OpenAI model name provider=OpenAIProvider(openai_client=client) ) # Use it in a runtime override async def main(): steps = await plan("Design a launch strategy for a mobile app.") print(steps) asyncio.run(main()) but not working
m
thought for 14.7 seconds
I understand the issue. For
marvin.plan()
, we need to configure it differently since it doesn't accept the model configuration in the same way as agents. Here's how to modify your code to work with a custom endpoint:
Copy code
python
import os
import marvin
from openai import AsyncOpenAI
import asyncio

# Method 1: Using environment variables (Most reliable)
os.environ["OPENAI_API_BASE"] = "<http://your-endpoint>"  # Your actual endpoint
os.environ["OPENAI_API_KEY"] = "EMPTY"

# Optional: If your endpoint uses a specific model name
os.environ["MARVIN_MODEL_NAME"] = "default"  # Your model name

async def main():
    try:
        steps = await marvin.plan("Design a launch strategy for a mobile app.")
        print(steps)
    except Exception as e:
        print(f"Error occurred: {str(e)}")
        # Print more details about the error
        print(f"Error type: {type(e)}")

asyncio.run(main())
If you're still getting connection errors, you can try this alternative approach with more detailed error handling:
Copy code
python
import os
import marvin
from openai import AsyncOpenAI
import asyncio
import httpx

# Configure the base settings
os.environ["OPENAI_API_BASE"] = "<http://your-endpoint>"
os.environ["OPENAI_API_KEY"] = "EMPTY"

# Optional: Disable SSL verification if needed
os.environ["OPENAI_VERIFY_SSL"] = "false"

async def test_connection():
    """Test the connection to the endpoint"""
    client = AsyncOpenAI(
        base_url=os.environ["OPENAI_API_BASE"],
        api_key=os.environ["OPENAI_API_KEY"],
        timeout=httpx.Timeout(30.0)  # Increase timeout if needed
    )
    
    try:
        # Test the connection with a simple completion
        response = await client.chat.completions.create(
            model="default",  # Your model name
            messages=[{"role": "user", "content": "Hello"}]
        )
        print("Connection test successful!")
        return True
    except Exception as e:
        print(f"Connection test failed: {str(e)}")
        return False

async def main():
    # First test the connection
    connection_ok = await test_connection()
    
    if connection_ok:
        try:
            steps = await marvin.plan("Design a launch strategy for a mobile app.")
            print(steps)
        except Exception as e:
            print(f"Error in marvin.plan(): {str(e)}")
    else:
        print("Skipping marvin.plan() due to connection test failure")

if __name__ == "__main__":
    asyncio.run(main())
If you're still experiencing issues, could you please: 1. Share the exact error message you're getting 2. Confirm if the test_connection() function works 3. Share your endpoint's URL format (you can obscure sensitive parts) Also, make sure: 1. Your endpoint is running and accessible 2. The URL format is correct (including protocol http:// or https://) 3. The port number is correct 4. Your endpoint is compatible with the OpenAI API format Would you like me to provide any additional troubleshooting steps based on specific errors you're seeing?
s
@Marvin connection test successful error in marvin.plan(): connection error
m
thought for 20.8 seconds
I understand - the connection test works but
marvin.plan()
is still failing. This suggests that Marvin might be using a different configuration path for its calls. Let's try a more comprehensive solution:
Copy code
python
import os
import marvin
from openai import AsyncOpenAI
import asyncio
import httpx
from marvin import settings

# More comprehensive environment setup
os.environ.update({
    "OPENAI_API_BASE": "<http://your-endpoint>",
    "OPENAI_API_KEY": "EMPTY",
    "MARVIN_OPENAI_API_BASE": "<http://your-endpoint>",  # Try adding this
    "MARVIN_OPENAI_API_KEY": "EMPTY",                  # And this
    "OPENAI_VERIFY_SSL": "false",                      # If needed
})

# Try to directly configure Marvin's settings
settings.openai.api_base = "<http://your-endpoint>"
settings.openai.api_key = "EMPTY"

async def test_connection():
    """Test the connection to the endpoint"""
    client = AsyncOpenAI(
        base_url=os.environ["OPENAI_API_BASE"],
        api_key=os.environ["OPENAI_API_KEY"],
        timeout=httpx.Timeout(30.0),
        http_client=httpx.AsyncClient(verify=False)  # If needed for SSL
    )
    
    try:
        response = await client.chat.completions.create(
            model="default",
            messages=[{"role": "user", "content": "Hello"}]
        )
        print("Connection test successful!")
        print(f"Model responded with: {response.choices[0].message.content}")
        return True
    except Exception as e:
        print(f"Connection test failed: {str(e)}")
        return False

async def custom_plan():
    """Alternative to marvin.plan() using direct API calls"""
    client = AsyncOpenAI(
        base_url=os.environ["OPENAI_API_BASE"],
        api_key=os.environ["OPENAI_API_KEY"],
        timeout=httpx.Timeout(30.0),
        http_client=httpx.AsyncClient(verify=False)  # If needed for SSL
    )
    
    messages = [
        {"role": "system", "content": "You are a helpful AI assistant that creates detailed plans."},
        {"role": "user", "content": "Design a launch strategy for a mobile app."}
    ]
    
    try:
        response = await client.chat.completions.create(
            model="default",
            messages=messages,
            temperature=0.7,
        )
        return response.choices[0].message.content
    except Exception as e:
        print(f"Custom plan failed: {str(e)}")
        return None

async def main():
    # First test the connection
    connection_ok = await test_connection()
    
    if connection_ok:
        print("\nTrying marvin.plan()...")
        try:
            steps = await marvin.plan("Design a launch strategy for a mobile app.")
            print("Marvin plan succeeded:")
            print(steps)
        except Exception as e:
            print(f"Error in marvin.plan(): {str(e)}")
            
            print("\nTrying custom plan implementation...")
            custom_steps = await custom_plan()
            if custom_steps:
                print("Custom plan succeeded:")
                print(custom_steps)

if __name__ == "__main__":
    asyncio.run(main())
If you're still getting the connection error with
marvin.plan()
, we can try to debug it further: 1. Add debug logging:
Copy code
python
import logging

# Add this before running the main code
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger("marvin")
logger.setLevel(logging.DEBUG)
2. Or create a custom implementation of the planning functionality: ```python async def alternative_plan(prompt: str): """Alternative implementation of marvin.plan()""" client = AsyncOpenAI( base_url=os.environ["OPENAI_API_BASE"], api_key=os.environ["OPENAI_API_KEY"], timeout=httpx.Timeout(30.0) ) system_prompt = """ You are a planning assistant. When given a task: 1. Break it down into clear, sequential steps 2. Provide specific, actionable items for each step 3. Include relevant details and considerations
Format your response as a numbered list. """ try: response = await client.chat.completions.create( model="default", messages=[ {"role": "system", "content": system_prompt}, {"role": "user", "content": prompt} ], temperature=0.7 ) return response.choices[0].message.content except Exception as e: print(f"Alternative plan failed: {str(e)}") return None # Use it in main(): custom_result = await alternative_plan("Design a launch strategy for a mobile app.") if custom_result: print(custom_result) ``` Could you try this updated code and let me know: 1. If you're still getting the same error with
marvin.plan()
2. If the custom implementation works 3. What the debug logs show (if you enable them) This will help us determine whether the issue is specific to
marvin.plan()
or if we need to implement a custom solution using the direct API calls that we know work.
s
@Marvin tried to use llm for the model in marvin plan. but getting this error: Traceback (most recent call last): File "/scratch/home/a/agent-sdk-for-a/agent_sdk_for_a/test/marvingaia.py", line 1442, in <module> plan = marvin.plan(instructions=question, agent=planagent) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/scratch/home/a/agent-sdk-for-a/.venv/lib/python3.12/site-packages/marvin/fns/plan.py", line 230, in plan return run_sync( ^^^^^^^^^ File "/scratch/home/a/agent-sdk-for-a/.venv/lib/python3.12/site-packages/marvin/utilities/asyncio.py", line 42, in run_sync return ctx.run(loop.run_until_complete, coro) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/scratch/home/a/agent-sdk-for-a/.venv/lib/python3.12/site-packages/nest_asyncio.py", line 98, in run_until_complete return f.result() ^^^^^^^^^^ File "/scratch/home/a/.local/share/uv/python/cpython-3.12.11-linux-x86_64-gnu/lib/python3.12/asyncio/futures.py", line 202, in result raise self._exception.with_traceback(self._exception_tb) File "/scratch/home/a/.local/share/uv/python/cpython-3.12.11-linux-x86_64-gnu/lib/python3.12/asyncio/tasks.py", line 314, in __step_run_and_handle_result result = coro.send(None) ^^^^^^^^^^^^^^^ File "/scratch/home/a/agent-sdk-for-a/.venv/lib/python3.12/site-packages/marvin/fns/plan.py", line 194, in plan_async return create_tasks( ^^^^^^^^^^^^^ File "/scratch/home/a/agent-sdk-for-a/.venv/lib/python3.12/site-packages/marvin/fns/plan.py", line 114, in create_tasks visit(task.id) File "/scratch/home/a/agent-sdk-for-a/.venv/lib/python3.12/site-packages/marvin/fns/plan.py", line 93, in visit raise ValueError( ValueError: Parent task 0 not found for task 1
m
thought for 24.7 seconds
This error occurs when there's an issue with the task hierarchy in
marvin.plan()
. Let's fix this by properly configuring the agent and the planning structure. Here's the corrected approach:
Copy code
python
import marvin
from marvin import Agent
import asyncio

# Create a planning-specific agent
planagent = Agent(
    instructions="""You are an expert planning assistant. When creating plans:
    1. Always start with a root task (task 0)
    2. Break down complex tasks into clear subtasks
    3. Ensure each subtask has a clear parent task
    4. Provide specific, actionable items
    """,
    model="your-model-name"  # Your specific model
)

# Configure the environment
import os
os.environ["OPENAI_API_BASE"] = "your-endpoint"
os.environ["OPENAI_API_KEY"] = "your-key"

async def create_plan(question: str):
    try:
        # Create initial root task
        root_task = {
            "id": 0,
            "description": "Main objective",
            "parent_id": None
        }
        
        # Use marvin.plan() with the configured agent
        plan = await marvin.plan(
            instructions=question,
            agent=planagent,
            initial_tasks=[root_task]  # Provide the root task
        )
        return plan
    except Exception as e:
        print(f"Error creating plan: {str(e)}")
        return None

# Run the planning
async def main():
    question = "Design a launch strategy for a mobile app."
    try:
        result = await create_plan(question)
        if result:
            print("Plan created successfully:")
            print(result)
    except Exception as e:
        print(f"Error in main: {str(e)}")

if __name__ == "__main__":
    asyncio.run(main())
If you're still experiencing issues, here's an alternative approach using a custom planning implementation:
Copy code
python
import marvin
from marvin import Agent
import asyncio

class PlanningAgent(Agent):
    def __init__(self, model_name: str):
        super().__init__(
            instructions="""You are an expert planning assistant. Create detailed, 
            hierarchical plans with clear parent-child relationships between tasks.""",
            model=model_name
        )
    
    async def create_hierarchical_plan(self, question: str):
        # Create a planning prompt that ensures proper task hierarchy
        planning_prompt = f"""
        Create a detailed plan for: {question}
        
        Format your response as a hierarchical list where:
        - Each task has a unique ID
        - Each subtask references its parent task ID
        - Start with task ID 0 as the main objective
        
        Example format:
        0. Main objective
            1. First major task (parent: 0)
                1.1 Subtask (parent: 1)
                1.2 Subtask (parent: 1)
            2. Second major task (parent: 0)
                2.1 Subtask (parent: 2)
        """
        
        try:
            response = await self.run(planning_prompt)
            return response
        except Exception as e:
            print(f"Error in planning: {str(e)}")
            return None

async def main():
    # Configure the environment
    os.environ["OPENAI_API_BASE"] = "your-endpoint"
    os.environ["OPENAI_API_KEY"] = "your-key"
    
    # Create the planning agent
    planner = PlanningAgent(model_name="your-model-name")
    
    # Test the planning
    question = "Design a launch strategy for a mobile app."
    result = await planner.create_hierarchical_plan(question)
    
    if result:
        print("Generated Plan:")
        print(result)

if __name__ == "__main__":
    asyncio.run(main())
And if you need even more control over the planning process, here's a structured planning implementation: ```python from dataclasses import dataclass from typing import List, Optional import marvin from marvin import Agent @dataclass class PlanTask: id: int description: str parent_id: Optional[int] = None subtasks: List['PlanTask'] = None
def __post_init__(self): if self.subtasks is None: self.subtasks = [] class StructuredPlanningAgent: def __init__(self, model_name: str): self.agent = Agent( instructions="You are an expert planning assistant.", model=model_name ) self.tasks = [] async def create_plan(self, objective: str) -> List[PlanTask]: # Create root task root_task = PlanTask(id=0, description=objective) self.tasks.append(root_task) planning_prompt = f""" Create a detailed plan for: {objective} Break this down into major tasks and subtasks. For each task, specify: 1. Task ID (starting from 1) 2. Parent task ID (0 for main tasks) 3. Description Format: TaskID (ParentID): Description """ try: response = await self.agent.run(planning_prompt) # Parse the response and create task hierarchy # (Implementation depends on your model's output format) return self.tasks except Exception as e: print(f"Error in structured planning: {str(e)}") return None async def main(): planner = StructuredPlanningAgent(model_name="your-model-name") plan = await planner.create_plan("Design a launch strategy for a mobile app.") if plan: print("Structured Plan:") for task in plan: print(f"Task {task.id}: {task.description}") for subtask in task.subtasks: print(f" Subtask {subtask.id}: {subtask.description}") if name == "__main__": asyncio.run(main()) ``` Try these approaches and let me know which one works better for your use case. The key points to remember are: 1. Always start with a root task (ID 0) 2. Ensure proper parent-child relationships 3. Handle the task hierarchy explicitly 4. Provide clear instructions to the model about the expected format Would you like me to explain any part in more detail or help you adapt these solutions to your specific needs?
s
@Marvin this is part of my code: planagent = marvin.Agent( model=OpenAIModel( model_name="qwen2.5vl", provider=OpenAIProvider(openai_client=client), ), name="Planner", instructions="Write concise responses to user questions", ) if name == "__main__": all_logs = [] with marvin.Thread() as thread: # for index in range(165,166): index = 160 # Change this to loop if needed print(dataset[160]) question = dataset[index]["Question"] fileinfo = dataset[index]["file_path"] finalanswer = dataset[index]["Final answer"] qu = question + fileinfo plan = marvin.plan(instructions=question, agent=planagent) for i, task in enumerate(plan, 1): print(f"{i}. {task.instructions}")
m
thought for 22.8 seconds
I see the issue. When using
marvin.plan()
with a custom model, we need to properly structure the planning process and handle the task hierarchy. Here's how to modify your code:
Copy code
python
import marvin
from marvin import Agent
from openai import AsyncOpenAI
from pydantic_ai.models.openai import OpenAIModel
from pydantic_ai.providers.openai import OpenAIProvider
import asyncio

# Your client setup
client = AsyncOpenAI(
    base_url="your-endpoint",
    api_key="your-key"
)

# Create the planning agent with structured task handling
planagent = marvin.Agent(
    model=OpenAIModel(
        model_name="qwen2.5vl",
        provider=OpenAIProvider(openai_client=client),
    ),
    name="Planner",
    instructions="""You are a planning assistant that creates structured task lists.
    When creating plans:
    1. Always start with a root task (task 0)
    2. Each subsequent task must have a clear parent task
    3. Break down complex tasks into manageable subtasks
    4. Provide specific, actionable instructions
    
    Format your responses as:
    0. Root Task: [Main Objective]
        1. Task: [Description] (Parent: 0)
            1.1 Subtask: [Description] (Parent: 1)
            1.2 Subtask: [Description] (Parent: 1)
        2. Task: [Description] (Parent: 0)
    """,
)

async def create_structured_plan(question: str, file_info: str):
    # Create the initial root task
    root_task = {
        "id": 0,
        "description": f"Plan for: {question}",
        "parent_id": None
    }
    
    try:
        # Combine question and file info
        full_prompt = f"{question}\nContext: {file_info}"
        
        # Create the plan with explicit root task
        plan = await marvin.plan(
            instructions=full_prompt,
            agent=planagent,
            initial_tasks=[root_task]
        )
        return plan
    except Exception as e:
        print(f"Error creating plan: {str(e)}")
        return None

if __name__ == "__main__":
    all_logs = []
    
    async def process_question():
        with marvin.Thread() as thread:
            index = 160  # Change this to loop if needed
            print(dataset[index])
            question = dataset[index]["Question"]
            fileinfo = dataset[index]["file_path"]
            finalanswer = dataset[index]["Final answer"]
            
            try:
                # Create the plan
                plan = await create_structured_plan(question, fileinfo)
                
                if plan:
                    print("\nGenerated Plan:")
                    for i, task in enumerate(plan):
                        print(f"{i}. {task.instructions}")
                        if hasattr(task, 'subtasks') and task.subtasks:
                            for j, subtask in enumerate(task.subtasks, 1):
                                print(f"   {i}.{j} {subtask.instructions}")
            except Exception as e:
                print(f"Error processing question: {str(e)}")
    
    # Run the async function
    asyncio.run(process_question())
If you're still getting the parent task error, here's an alternative approach using a custom planning implementation: ```python import marvin from marvin import Agent from dataclasses import dataclass from typing import List, Optional @dataclass class PlanningTask: id: int description: str parent_id: Optional[int] = None class CustomPlanner: def __init__(self, agent: Agent): self.agent = agent async def create_plan(self, question: str, file_info: str) -> List[str]: planning_prompt = f""" Create a detailed plan for the following question: {question} Additional context: {file_info} Break this down into a numbered list of clear, sequential steps. Each step should be specific and actionable. """ try: response = await self.agent.run(planning_prompt)
return self._parse_response(response) except Exception as e: print(f"Error in planning: {str(e)}") return [] def _parse_response(self, response: str) -> List[str]: # Split the response into lines and clean up steps = [line.strip() for line in response.split('\n') if line.strip()] return steps if name == "__main__": all_logs = [] async def process_question(): with marvin.Thread() as thread: index = 160 print(dataset[index]) question = dataset[index]["Question"] fileinfo = dataset[index]["file_path"] finalanswer = dataset[index]["Final answer"] # Create custom planner planner = CustomPlanner(planagent) # Generate plan steps = await planner.create_plan(question, fileinfo) print("\nGenerated Plan:") for i, step in enumerate(steps, 1): print(f"{i}. {step}") # Run the async function asyncio.run(process_question()) ``` Key changes made: 1. Added structured instructions for the planning agent 2. Included proper task hierarchy handling 3. Created a custom planning implementation as a fallback 4. Added better error handling 5. Structured the async operations properly Try these modifications and let me know if you're still experiencing issues. Also, if you need to adjust the planning format or add specific handling for your dataset, I can help you customize the solution further. Would you like me to explain any part in more detail or help you adapt this to your specific needs?