Sweta Das
01/24/2025, 10:39 AMMarvin
01/24/2025, 10:41 AMrun_until
conditions. These conditions allow you to specify complex termination logic based on various factors such as task completion, failure, or custom criteria.
Here's a brief guide on how you might approach this:
1. Define Termination Conditions: Use the run_until
parameter when calling functions like run
, run_async
, run_tasks
, or run_tasks_async
to specify when the orchestration should terminate. For example, you can set a condition to stop execution after a certain number of attempts or when a task is marked as complete.
2. Combine Conditions: Termination conditions can be combined using boolean logic to create more complex criteria.
For more details, you can refer to the ControlFlow documentation on running tasks.
If you are using Prefect's core API, you might want to explore the top-level API for functions related to task execution control, such as allow_failure
or pause_flow_run
. However, the specifics will depend on your exact use case and the version of Prefect you are using.Sweta Das
01/24/2025, 10:43 AMfields_detection = cf.Task(
objective="Extract fields' values.",
agents=[fields_detector],
result_type=dict,
context=context
)
fields = fields_detection.run()
Given code goes into an infinite streaming loop.Marvin
01/24/2025, 10:43 AMrun_until
conditions, which allow you to specify when a task should terminate. Although the documentation doesn't explicitly mention a timeout parameter, you can create a condition to stop the task if it runs longer than your desired duration.
Here's a conceptual approach to implement a timeout:
1. Define a Timeout Condition: You can create a custom condition that checks the elapsed time since the task started and stops the task if it exceeds 20 seconds.
2. Use run_until
: Pass this condition to the run_until
parameter when executing the task. This will ensure the task terminates if it reaches the specified duration.
For more details, refer to the ControlFlow documentation on running tasks.
If ControlFlow doesn't support direct timeout settings, you may need to handle timeouts externally or modify the task's logic to respect a time constraint.Sweta Das
01/24/2025, 11:05 AMMarvin
01/24/2025, 11:05 AMrun_until
conditions to specify when a task should stop. This can prevent excessive repetitions by setting limits based on task completion, failure, or custom criteria.
3. Implement Idempotency: Design your task to be idempotent, meaning that running it multiple times with the same input should yield the same result without side effects. This can help prevent repeated outputs if the task is triggered multiple times.
4. Debugging and Logging: Add detailed logging within your task to understand its execution flow. This can help identify where and why the repetition occurs.
5. Concurrency Controls: If applicable, ensure your task execution doesn't involve unintended parallelism or concurrency that might lead to repeated outputs.
If you have access to the specific image or log output, reviewing that might provide more insights into the root cause of the repetition. However, without seeing the image, these general strategies are a good starting point.Sweta Das
01/24/2025, 11:06 AMMarvin
01/24/2025, 11:07 AMrun_until
parameter should be used when you are executing tasks, specifically with functions like run
, run_async
, run_tasks
, or run_tasks_async
. It is not a parameter for Agent
or Task
initialization directly. Instead, you pass it when you call the run method on tasks or flows.
Here's how you might use it conceptually:
python
fields_detection.run(run_until=your_condition)
This allows you to specify termination conditions based on task completion, failure, or custom criteria, effectively controlling when the task execution should stop. For more detailed guidance, refer to the ControlFlow documentation on running tasks.Sweta Das
01/24/2025, 11:27 AM# Define the run_until condition
def run_until_timeout(start_time, timeout=20):
"""Checks if the task has exceeded the timeout."""
return time.time() - start_time > timeout
context = {"page_text": text}
start_time = time.time()
try:
fields_detection = cf.Task(
objective="Extract fields' values.",
agents=[fields_detector],
result_type=dict,
context=context
)
fields = cf.run_tasks(
tasks=[fields_detection],
run_until=run_until_timeout(start_time, timeout=20)
)
Error:
TypeError: 'bool' object is not callable
17:08:03.474 | ERROR | Task run 'Run task: Task #78327020 ("Extract fields\' values.")' - Finished in state Failed("Task run encountered an exception TypeError: 'bool' object is not callable")
Error while finding fields: 'bool' object is not callable
Marvin
01/24/2025, 11:28 AMrun_until
condition is being used. The run_until
parameter expects a callable function that returns a boolean, rather than the result of a boolean expression. Here's how you can fix it:
1. Define the Condition as a Callable: Instead of passing the result of run_until_timeout(start_time, timeout=20)
, you should pass the function itself, so it can be called during task execution.
2. Modify the Function to Accept No Arguments: You can use a lambda or a closure to pass the start_time
and timeout
without evaluating them immediately.
Here's a revised version of your code:
python
import time
# Define the run_until condition
def run_until_timeout(start_time, timeout=20):
"""Checks if the task has exceeded the timeout."""
return time.time() - start_time > timeout
context = {"page_text": text}
start_time = time.time()
fields_detection = cf.Task(
objective="Extract fields' values.",
agents=[fields_detector],
result_type=dict,
context=context
)
# Pass a callable to run_until
fields = cf.run_tasks(
tasks=[fields_detection],
run_until=lambda: run_until_timeout(start_time, timeout=20)
)
This change ensures that run_until_timeout
is called during the task execution to check if the timeout condition is met, rather than being evaluated immediately when run_tasks
is called.Sweta Das
01/24/2025, 11:30 AMTypeError: fieldDetection.<locals>.<lambda>() takes 0 positional arguments but 1 was given
17:14:07.109 | ERROR | Task run 'Run task: Task #2b7667d2 ("Extract fields\' values.")' - Finished in state Failed('Task run encountered an exception TypeError: fieldDetection.<locals>.<lambda>() takes 0 positional arguments but 1 was given')
Error while finding fields: fieldDetection.<locals>.<lambda>() takes 0 positional arguments but 1 was given
{}
Marvin
01/24/2025, 11:30 AMrun_until
lambda function is expected to accept an argument, but it currently does not. The run_until
condition you provide should be callable and should be able to handle the parameters passed by the ControlFlow system.
To resolve this, you can modify the lambda function to accept the necessary argument. Here's a conceptual fix:
python
import time
# Define the run_until condition
def run_until_timeout(start_time, timeout=20):
"""Checks if the task has exceeded the timeout."""
return time.time() - start_time > timeout
context = {"page_text": text}
start_time = time.time()
fields_detection = cf.Task(
objective="Extract fields' values.",
agents=[fields_detector],
result_type=dict,
context=context
)
# Adjust the lambda to accept the required argument
fields = cf.run_tasks(
tasks=[fields_detection],
run_until=lambda *args: run_until_timeout(start_time, timeout=20)
)
The *args
in the lambda function allows it to accept any arguments that might be passed by the ControlFlow system, even if they are not used in your logic. This should prevent the TypeError
you're seeing.Sweta Das
02/21/2025, 6:19 AM12:02:57.159 | ERROR | GlobalEventLoopThread | prefect._internal.concurrency - Service 'EventsWorker' failed to process item Event(occurred=DateTime(2025, 2, 21, 6, 14, 36, 60827, tzinfo=Timezone('UTC')), event='prefect.task-run.Running', resource=Resource(root={'prefect.resource.id': 'prefect.task-run.ba142228-1c8a-4fb6-a365-fd4430c7c311', 'prefect.resource.name': 'Update Operation Task-4d8', 'prefect.state-message': '', 'prefect.state-name': 'Running', 'prefect.state-timestamp': '2025-02-21T06:14:36.060827+00:00', 'prefect.state-type': 'RUNNING', 'prefect.orchestration': 'client'}), related=[RelatedResource(root={'prefect.resource.id': 'prefect.flow-run.2129eac2-ed2a-45bf-b151-a8f5465976b0', 'prefect.resource.role': 'flow-run', 'prefect.resource.name': 'hypnotic-lemming'}), RelatedResource(root={'prefect.resource.id': 'prefect.flow.c669e2ec-5e97-463b-b8f6-58d93df7d403', 'prefect.resource.role': 'flow', 'prefect.resource.name': 'AI Flow'})], payload={'intended': {'from': 'PENDING', 'to': 'RUNNING'}, 'initial_state': {'type': 'PENDING', 'name': 'Pending', 'message': '', 'state_details': {}}, 'validated_state': {'type': 'RUNNING', 'name': 'Running', 'message': '', 'state_details': {}, 'data': None}, 'task_run': {'name': 'Update Operation Task-4d8', 'task_key': 'update_operation_task-afd2b636', 'dynamic_key': '4d8b424e-70a0-4af0-8d93-6684ec6856cd', 'empirical_policy': {'max_retries': 0, 'retry_delay_seconds': 0.0, 'retries': 5, 'retry_delay': 5}, 'tags': [], 'labels': {}, 'task_inputs': {'operation_task_id': [], 'result': [], 'status': []}, 'run_count': 1, 'flow_run_run_count': 1, 'expected_start_time': '2025-02-21T06:14:36.059811Z', 'start_time': '2025-02-21T06:14:36.060827Z', 'total_run_time': 0.0}}, id=UUID('70e53acf-a5dd-4e8c-a946-a2b707759dcd'), follows=UUID('f67b5b4b-8350-4835-97fc-cf4a4dd09029'))
12:03:07.161 | WARNING | prefect.events.clients - Unable to connect to '<wss://api.prefect.cloud/api/accounts/37a363d9-7501-4c4f-9ad0-95716d629955/workspaces/a4c5b649-144a-4a79-a8b3-72feedab756b/events/in>'. Please check your network settings to ensure websocket connections to the API are allowed. Otherwise event data (including task run data) may be lost. Reason: . Set PREFECT_DEBUG_MODE=1 to see the full error.
12:03:07.163 | ERROR | GlobalEventLoopThread | prefect._internal.concurrency - Service 'EventsWorker' failed to process item Event(occurred=DateTime(2025, 2, 21, 6, 14, 39, 223367, tzinfo=Timezone('UTC')), event='prefect.task-run.Completed', resource=Resource(root={'prefect.resource.id': 'prefect.task-run.ba142228-1c8a-4fb6-a365-fd4430c7c311', 'prefect.resource.name': 'Update Operation Task-4d8', 'prefect.state-message': '', 'prefect.state-name': 'Completed', 'prefect.state-timestamp': '2025-02-21T06:14:39.223367+00:00', 'prefect.state-type': 'COMPLETED', 'prefect.orchestration': 'client'}), related=[RelatedResource(root={'prefect.resource.id': 'prefect.flow-run.2129eac2-ed2a-45bf-b151-a8f5465976b0', 'prefect.resource.role': 'flow-run', 'prefect.resource.name': 'hypnotic-lemming'}), RelatedResource(root={'prefect.resource.id': 'prefect.flow.c669e2ec-5e97-463b-b8f6-58d93df7d403', 'prefect.resource.role': 'flow', 'prefect.resource.name': 'AI Flow'})],
Marvin
02/21/2025, 6:19 AMSweta Das
02/21/2025, 6:20 AM12:02:57.159 | ERROR | GlobalEventLoopThread | prefect._internal.concurrency - Service 'EventsWorker' failed to process item Event(occurred=DateTime(2025, 2, 21, 6, 14, 36, 60827, tzinfo=Timezone('UTC')), event='prefect.task-run.Running', resource=Resource(root={'prefect.resource.id': 'prefect.task-run.ba142228-1c8a-4fb6-a365-fd4430c7c311', 'prefect.resource.name': 'Update Operation Task-4d8', 'prefect.state-message': '', 'prefect.state-name': 'Running', 'prefect.state-timestamp': '2025-02-21T06:14:36.060827+00:00', 'prefect.state-type': 'RUNNING', 'prefect.orchestration': 'client'}), related=[RelatedResource(root={'prefect.resource.id': 'prefect.flow-run.2129eac2-ed2a-45bf-b151-a8f5465976b0', 'prefect.resource.role': 'flow-run', 'prefect.resource.name': 'hypnotic-lemming'}), RelatedResource(root={'prefect.resource.id': 'prefect.flow.c669e2ec-5e97-463b-b8f6-58d93df7d403', 'prefect.resource.role': 'flow', 'prefect.resource.name': 'AI Flow'})], payload={'intended': {'from': 'PENDING', 'to': 'RUNNING'}, 'initial_state': {'type': 'PENDING', 'name': 'Pending', 'message': '', 'state_details': {}}, 'validated_state': {'type': 'RUNNING', 'name': 'Running', 'message': '', 'state_details': {}, 'data': None}, 'task_run': {'name': 'Update Operation Task-4d8', 'task_key': 'update_operation_task-afd2b636', 'dynamic_key': '4d8b424e-70a0-4af0-8d93-6684ec6856cd', 'empirical_policy': {'max_retries': 0, 'retry_delay_seconds': 0.0, 'retries': 5, 'retry_delay': 5}, 'tags':...
Sweta Das
02/21/2025, 6:20 AMMarvin
02/21/2025, 6:23 AMSweta Das
02/21/2025, 6:25 AM12:02:57.159 | ERROR | GlobalEventLoopThread | prefect._internal.concurrency - Service 'EventsWorker' failed to process item Event(occurred=DateTime(2025, 2, 21, 6, 14, 36, 60827, tzinfo=Timezone('UTC')), event='prefect.task-run.Running', resource=Resource(root={'prefect.resource.id': 'prefect.task-run.ba142228-1c8a-4fb6-a365-fd4430c7c311', 'prefect.resource.name': 'Update Operation Task-4d8', 'prefect.state-message': '', 'prefect.state-name': 'Running', 'prefect.state-timestamp': '2025-02-21T06:14:36.060827+00:00', 'prefect.state-type': 'RUNNING', 'prefect.orchestration': 'client'}), related=[RelatedResource(root={'prefect.resource.id': 'prefect.flow-run.2129eac2-ed2a-45bf-b151-a8f5465976b0', 'prefect.resource.role': 'flow-run', 'prefect.resource.name': 'hypnotic-lemming'}), RelatedResource(root={'prefect.resource.id': 'prefect.flow.c669e2ec-5e97-463b-b8f6-58d93df7d403', 'prefect.resource.role': 'flow', 'prefect.resource.name': 'AI Flow'})], payload={'intended': {'from': 'PENDING', 'to': 'RUNNING'}, 'initial_state': {'type': 'PENDING', 'name': 'Pending', 'message': '', 'state_details': {}}, 'validated_state': {'type': 'RUNNING', 'name': 'Running', 'message': '', 'state_details': {}, 'data': None}, 'task_run': {'name': 'Update Operation Task-4d8', 'task_key': 'update_operation_task-afd2b636', 'dynamic_key': '4d8b424e-70a0-4af0-8d93-6684ec6856cd', 'empirical_policy': {'max_retries': 0, 'retry_delay_seconds': 0.0, 'retries': 5, 'retry_delay': 5}, 'tags':...
Marvin
02/21/2025, 6:25 AMSweta Das
02/21/2025, 6:26 AM/events/in'. Please check your network settings to ensure websocket connections to the API are allowed. Otherwise event data (including task run data) may be lost. Reason: . Set PREFECT_DEBUG_MODE=1 to see the full error.
Marvin
02/21/2025, 6:26 AMPREFECT_API_URL
is correctly set to the API endpoint you are trying to connect to.
3. Debug Mode: Set the environment variable PREFECT_DEBUG_MODE=1
to enable debug mode and get more detailed error messages. This might give you more insight into what is causing the connection to fail.
4. Proxy Settings: If you are behind a corporate proxy, ensure that your proxy settings allow WebSocket connections.
5. Prefect Server: Ensure that the Prefect server is running and accessible from your client. You can test this by trying to access the API endpoint directly from your browser or using a tool like curl
.
If these steps do not resolve the issue, I recommend checking the Prefect logs for more detailed error messages or reaching out to the Prefect community for further assistance. If you need more specific information from the Prefect documentation, I can search for relevant topics.