Charles Liu
05/18/2021, 8:12 PMKevin Kho
Kevin Kho
Charles Liu
05/18/2021, 9:39 PMCharles Liu
05/18/2021, 9:40 PMCharles Liu
05/18/2021, 9:40 PMDylan
Dylan
Dylan
Charles Liu
05/18/2021, 9:58 PMCharles Liu
05/18/2021, 9:58 PMCharles Liu
05/18/2021, 9:59 PMCharles Liu
05/18/2021, 10:00 PMCharles Liu
05/18/2021, 10:01 PMDylan
Dylan
RunConfig
object?Dylan
Dylan
config = KubernetesRun(image="my-image-url", cpu_request=1, labels=["my-label"])
Dylan
Dylan
Charles Liu
05/18/2021, 10:05 PMRUN_CONFIG = KubernetesRun(image="ARTIFACTREPO",
image_pull_secrets=["AWS_CREDENTIALS"]
)
Dylan
Dylan
Dylan
Dylan
Charles Liu
05/18/2021, 10:07 PMCharles Liu
05/18/2021, 10:07 PMCharles Liu
05/18/2021, 10:08 PMCharles Liu
05/18/2021, 10:08 PMCharles Liu
05/18/2021, 10:14 PMCharles Liu
05/18/2021, 10:14 PMCharles Liu
05/18/2021, 10:14 PMCharles Liu
05/18/2021, 10:38 PMDylan
Hugo Shi
05/19/2021, 4:44 PMHugo Shi
05/19/2021, 4:45 PMHugo Shi
05/19/2021, 4:45 PMDylan
Charles Liu
05/19/2021, 7:07 PMTyler Wanner
05/19/2021, 8:04 PMisn't the point of autoscaling to account for all load and not needing to set limits upfrontI think this is a common misconception. The key to autoscaling resiliently is to properly size your workloads. If your workload does not request any resources, then the cluster's autoscaler cannot properly anticipate requiring additional capacity. Your cluster will then overschedule work on your node, and when the node eventually runs out of gas, it will start terminating your introducing latency (sometimes fatal latency) to your workflows
Tyler Wanner
05/19/2021, 8:19 PMCharles Liu
05/24/2021, 9:40 PMTyler Wanner
05/24/2021, 9:41 PMCharles Liu
05/24/2021, 9:42 PM