Michiel
10/08/2024, 12:56 PM"job_configuration": {
"env": "{{ env }}",
"name": "{{ name }}",
"labels": "{{ labels }}",
"command": "{{ command }}",
"namespace": "{{ namespace }}",
"job_manifest": {
"kind": "Job",
"spec": {
"template": {
"spec": {
"containers": [
{
"env": "{{ env }}",
"args": "{{ command }}",
"name": "prefect-job",
"image": "{{ image }}",
"imagePullPolicy": "{{ image_pull_policy }}"
}
Marvin
10/08/2024, 12:56 PMUsing prefect 3 I'd like to add volumemounts to the flow job template using the .deploy() function. Is this possible out of the box? Or would I need to add a variable in the work pool setup and add the volumemmounts there to the base job template, because I don't see it in the setup there. Below follows the standard base job template defined in my work pool.``` "job_configuration": { "env": "{{ env }}", "name": "{{ name }}", "labels": "{{ labels }}", "command": "{{ command }}", "namespace": "{{ namespace }}", "job_manifest": { "kind": "Job", "spec": { "template": { "spec": { "containers": [ { "env": "{{ env }}", "args": "{{ command }}", "name": "prefect-job", "image": "{{ image }}", "imagePullPolicy": "{{ image_pull_policy }}" } ], "completions": 1, "parallelism": 1, "restartPolicy": "Never", "serviceAccountName": "{{ service_account_name }}" } }, "backoffLimit": 0, "ttlSecondsAfterFinished": "{{ finished_job_ttl }}" }, "metadata": { "labels": "{{ labels }}", "namespace": "{{ namespace }}", "generate
Marvin
10/09/2024, 7:54 AMUsing prefect 3 I'd like to add volumemounts to the flow job template using the .deploy() function. Is this possible out of the box? Or would I need to add a variable in the work pool setup and add the volumemmounts there to the base job template, because I don't see it in the setup there. Below follows the standard base job template defined in my work pool.``` "job_configuration": { "env": "{{ env }}", "name": "{{ name }}", "labels": "{{ labels }}", "command": "{{ command }}", "namespace": "{{ namespace }}", "job_manifest": { "kind": "Job", "spec": { "template": { "spec": { "containers": [ { "env": "{{ env }}", "args": "{{ command }}", "name": "prefect-job", "image": "{{ image }}", "imagePullPolicy": "{{ image_pull_policy }}" } ], "completions": 1, "parallelism": 1, "restartPolicy": "Never", "serviceAccountName": "{{ service_account_name }}" } }, "backoffLimit": 0, "ttlSecondsAfterFinished": "{{ finished_job_ttl }}" }, "metadata": { "labels": "{{ labels }}", "namespace": "{{ namespace }}", "generate
Marvin
10/09/2024, 7:55 AM.deploy()
function itself. Instead, you typically manage these configurations within the base job template of your work pool, which can be customized using variables. Here's a step-by-step guide to help you achieve this:
1. Modify the Base Job Template: Within the base job template of your work pool, you can add volume
and volumeMounts
sections under the containers
configuration.
2. Use Job Variables: You can define job variables within the work pool configuration that reference the volume mounts. This can be done in the variables
section of the work pool setup.
3. Override in Deployments: Use the job_variables
in your deployment to override default values in the base job template. This allows you to specify the volume mounts dynamically when deploying a flow.
You would define your volume mounts in a way that uses the job variables allowing them to be dynamic and customizable.
Here are some links to Prefect documentation that might help you understand and implement this:
- Work Pools in Prefect 3
- Prefect YAML and Deployment Mechanics
If you need a specific example of the configuration or help with setting up the YAML, feel free to ask!Michiel
10/09/2024, 9:03 AMMarvin
10/09/2024, 9:04 AM.deploy()
function, you'll need to adjust your work pool's base job template and include the appropriate details when you deploy. Here's a step-by-step example:
### Step 1: Modify the Base Job Template
You'll need to add placeholders for volumes and volume mounts in your work pool's base job template. Here's an example JSON configuration for the job template:
json
{
"job_configuration": {
"env": "{{ env }}",
"name": "{{ name }}",
"labels": "{{ labels }}",
"command": "{{ command }}",
"namespace": "{{ namespace }}",
"job_manifest": {
"kind": "Job",
"spec": {
"template": {
"spec": {
"containers": [
{
"env": "{{ env }}",
"args": "{{ command }}",
"name": "prefect-job",
"image": "{{ image }}",
"imagePullPolicy": "{{ image_pull_policy }}",
"volumeMounts": "{{ volume_mounts }}"
}
],
"volumes": "{{ volumes }}"
}
}
}
}
}
}
### Step 2: Deploy the Flow with Volume Configurations
You can then use the .deploy()
method in your flow.py
to specify the volumes and volume mounts. Here's an example of how you might set this up:
python
from prefect import flow
@flow
def my_flow():
# Your flow logic here
pass
if __name__ == "__main__":
my_flow.deploy(
name="my-flow-with-volumes",
work_pool_name="my-work-pool",
job_variables={
"volumes": [
{
"name": "my-volume",
"persistentVolumeClaim": {
"claimName": "my-pvc"
}
}
],
"volume_mounts": [
{
"mountPath": "/mnt/data",
"name": "my-volume"
}
]
}
)
### Explanation
- volumes: This specifies the volumes to be used in the flow run. In this example, it's configured to use a PersistentVolumeClaim (PVC).
- volumeMounts: This defines how the volumes should be mounted onto the containers.
### Additional Resources
- Work Pools in Prefect 3
- Prefect YAML and Job Variables
This approach allows you to keep your infrastructure flexible and your deployment configurations clear. Let me know if you have any further questions!Michiel
10/09/2024, 9:09 AMMarvin
10/09/2024, 9:10 AMvolumes
and volumeMounts
are correctly formatted according to the JSON schema expected by Prefect. Let's refine the configuration and clarify how to declare these variables in the base job template.
### Correct Formatting for volumes
and volumeMounts
Ensure that your definitions follow the expected Kubernetes format. Here's a refined example:
python
# In your flow.py or where you are deploying the flow
my_flow.deploy(
name="my-flow-with-volumes",
work_pool_name="my-work-pool",
job_variables={
"volumes": [
{
"name": "postgres-exporter",
"secret": {
"secretName": "postgres-exporter"
}
},
{
"name": "gitea",
"secret": {
"secretName": "gitea-acc"
}
},
{
"name": "databricks",
"secret": {
"secretName": "azure-service-s"
}
},
{
"name": "prefect-sp",
"secret": {
"secretName": "azure-service"
}
}
],
"volume_mounts": [
{
"mountPath": "/mnt/data",
"name": "postgres-exporter"
},
{
"mountPath": "/mnt/gitea",
"name": "gitea"
},
{
"mountPath": "/mnt/databricks",
"name": "databricks"
},
{
"mountPath": "/mnt/prefect",
"name": "prefect-sp"
}
]
}
)
### Modify the Base Job Template JSON
Add placeholders for the variables in your work pool's base job template. Below is an updated JSON with clear declarations for the variables linked to volume configuration:
json
{
"job_configuration": {
"env": "{{ env }}",
"name": "{{ name }}",
"labels": "{{ labels }}",
"command": "{{ command }}",
"namespace": "{{ namespace }}",
"job_manifest": {
"kind": "Job",
"spec": {
"template": {
"spec": {
"containers": [
{
"env": "{{ env }}",
"args": "{{ command }}",
"name": "prefect-job",
"image": "{{ image }}",
"imagePullPolicy": "{{ image_pull_policy }}",
"volumeMounts": "{{ volume_mounts }}"
}
],
"volumes": "{{ volumes }}"
}
}
}
}
},
"variables": {
"volume_mounts": {
"type": "array",
"description": "List of volume mounts for the job",
"items": {
"type": "object",
"properties": {
"mountPath": {"type": "string"},
"name": {"type": "string"}
}
}
},
"volumes": {
"type": "array",
"description": "List of volumes for the job",
"items": {
"type": "object",
"properties": {
"name": {"type": "string"},
"secret": {
"type": "object",
"properties": {
"secretName": {"type": "string"}
}
}
}
}
}
}
}
### Explanation
- Variables Section: It defines the schema for volumes
and volumeMounts
as arrays of objects, each with specific property types. This helps Prefect validate the configuration against its expectations.
- Job Variables in Deployment: When deploying, ensure the job_variables
match this schema.
By correctly declaring these variables and types, you align with Prefect's expected schema, reducing the risk of validation errors. If issues persist, verify the integration with the Kubernetes setup or any secret-related configurations.