aviv
09/16/2024, 6:37 AMDeployment.build_from_flow
and I want to deploy it with environment variables from my .env file.
Is there a way to do it while creating the work pool?
Or the only way to do it is with the job_variables
argument? what is the best practice of this case?
This is how I create the work pool:
prefect work-pool create localhost-tests --type process
this is my current deployment script:
deployment = Deployment.build_from_flow(
flow=flow,
name=f"{flow.name}",
work_pool_name="localhost-tests",
job_variables={
"env": dict(env.to_dict())
},
)
deployment.apply()
Marvin
09/16/2024, 6:37 AM.env
file directly within the work pool setup, or if you need to use the job_variables
argument when creating the deployment. Let's check the relevant resources.
First, which version of Prefect are you using? This detail will help me search the correct documentation for you.aviv
09/16/2024, 6:38 AMMarvin
09/16/2024, 6:39 AMjob_variables
or infra_overrides
during the deployment process. Here are a few key insights:
1. Using job_variables or infra_overrides:
- You can specify environment variables directly in the job_variables
argument when using Deployment.build_from_flow
. This method allows you to dynamically set variables that your deployment can use, as shown in this guide on overriding job variables.
- For example:
python
deployment = Deployment.build_from_flow(
flow=flow,
name=f"{flow.name}",
work_pool_name="localhost-tests",
job_variables={
"env": {
"MY_ENV_VAR": "value",
"ANOTHER_ENV_VAR": "another_value"
}
}
)
deployment.apply()
2. Considerations for environment variables:
- The environment variables must be set on the machine where the deployment script is being executed. If using os.environ
, ensure these variables are exported in your local environment before running the script.
3. Handling .env files:
- You can load environment variables from a .env
file using Python libraries such as python-dotenv
and then pass them into job_variables
. This approach keeps your deployment script clean and separates configuration from code.
- Example:
python
from dotenv import load_dotenv
import os
# Load environment variables from .env file
load_dotenv()
deployment = Deployment.build_from_flow(
flow=flow,
name=f"{flow.name}",
work_pool_name="localhost-tests",
job_variables={
"env": {
"MY_ENV_VAR": os.getenv("MY_ENV_VAR"),
"ANOTHER_ENV_VAR": os.getenv("ANOTHER_ENV_VAR")
}
}
)
deployment.apply()
While it seems there isn't a direct method to set environmental variables on the work pool itself without using job_variables
or infra_overrides
, using these mechanisms still allows for flexibility in dynamically configuring your deployment environment.
For more details, check these resources:
- Deeper Dive: Overriding Work Pool Job Variables
- Prefect Deployment Guides
If you have any specific issues with how environment variables are not being respected, consider looking at relevant GitHub issues for potential bugs and workarounds: GitHub Issues.
Hope this helps! Let me know if you need further details!aviv
09/16/2024, 6:41 AMMarvin
09/16/2024, 6:41 AMpython
from prefect.deployments import Deployment
from prefect import flow
@flow
def flow_one():
print("This is Flow One")
@flow
def flow_two():
print("This is Flow Two")
# Define deployments
deployment_one = Deployment.build_from_flow(
flow=flow_one,
name="Flow One Deployment",
work_pool_name="my-work-pool",
)
deployment_two = Deployment.build_from_flow(
flow=flow_two,
name="Flow Two Deployment",
work_pool_name="my-work-pool",
)
# Apply deployments
deployment_one.apply()
deployment_two.apply()
2. Using prefect.yaml
File:
- You can define multiple deployments in a prefect.yaml
file to manage them declaratively.
- Example:
yaml
deployments:
- name: "flow-one-deployment"
flow_name: "flow_one"
work_pool: "my-work-pool"
- name: "flow-two-deployment"
flow_name: "flow_two"
work_pool: "my-work-pool"
- You can then deploy them using the CLI:
sh
prefect deploy --all
3. Prefixing Deployments:
- To avoid name conflicts and ensure clarity, you can prefix deployment names with their respective flow names.
sh
prefect deploy --name flow_one/deployment-1 --name flow_two/deployment-1
4. Using Remote Sources:
- You can also deploy flows from remote sources alongside local flows using the from_source
method.
- Example:
python
from prefect import deploy, flow
@flow(log_prints=True)
def local_flow():
print("I'm a local flow!")
if __name__ == "__main__":
deploy(
local_flow.to_deployment(name="local-deployment"),
flow.from_source(
source="<https://github.com/org/repo.git>",
entrypoint="flows.py:remote_flow",
).to_deployment(
name="remote-deployment",
),
work_pool_name="my-work-pool",
)
These methods help you structure your deployments effectively and keep them organized. For more information, you can refer to the Prefect deployment guide: Deploying Flows.
Let me know if you need more details or have any specific questions!aviv
09/16/2024, 6:50 AMMarvin
09/16/2024, 6:50 AMpython
import os
from prefect import flow, task
import pandas as pd
# Task to save a dataframe as a CSV file
@task
def save_csv(data: pd.DataFrame, filename: str, directory: str):
# Ensure directory exists
os.makedirs(directory, exist_ok=True)
# Construct the file path
file_path = os.path.join(directory, filename)
# Save data to CSV
data.to_csv(file_path, index=False)
print(f"File saved to {file_path}")
# Flow definition
@flow
def my_flow():
# Sample data
data1 = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
data2 = pd.DataFrame({'x': [7, 8, 9], 'y': [10, 11, 12]})
# Save CSV files
save_csv(data1, "file1.csv", "./data/flow1")
save_csv(data2, "file2.csv", "./data/flow1")
# Run the flow
if __name__ == "__main__":
my_flow()
### Key Points
1. Task Function:
- A task save_csv
is defined to handle the saving process. It ensures that the specified directory exists (os.makedirs(directory, exist_ok=True)
) and then saves the DataFrame to a CSV file in the specified directory.
2. Flow Function:
- In the flow my_flow
, sample data is created and save_csv
tasks are called with different filenames and directory paths. This ensures that each file is saved to the appropriate location.
3. Running the Flow:
- By running the flow (my_flow
), the tasks will execute, and the CSV files will be saved to your local file system.
This method ensures that your files are saved locally in a specified path, and it leverages Python’s built-in capabilities for better control and simplicity. For additional information and best practices, refer to the Prefect documentation on saving data to disk.
Let me know if you need more specific help or examples!aviv
09/16/2024, 6:51 AMMarvin
09/16/2024, 6:51 AMpython
import os
from prefect import flow, task
import pandas as pd
# Task to save a DataFrame as a CSV file
@task
def save_csv(data: pd.DataFrame, filename: str, directory: str):
# Ensure directory exists
os.makedirs(directory, exist_ok=True)
# Construct the file path
file_path = os.path.join(directory, filename)
# Save data to CSV
data.to_csv(file_path, index=False)
print(f"File saved to {file_path}")
# Flow definition
@flow
def my_flow():
# Sample data
data1 = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
data2 = pd.DataFrame({'x': [7, 8, 9], 'y': [10, 11, 12]})
# Save CSV files
save_csv(data1, "file1.csv", "./data/flow1")
save_csv(data2, "file2.csv", "./data/flow1")
# Deployment
if __name__ == "__main__":
deployment = Deployment.build_from_flow(
flow=my_flow,
name="My Flow Deployment",
work_pool_name="my-work-pool",
infra_overrides={
"env": {"SOME_ENV_VAR": "value"} # Set required environment variables
},
)
deployment.apply()
### Key Points:
1. Use os.makedirs
:
- Ensure the target directory exists before saving the file.
2. Specify Path in Task:
- Define the directory path when calling the saving task to control where files are saved.
3. Deployment Handling:
- Ensure that the environment where the deployment runs has the necessary permissions and paths accessible.
### Deploy the Flow:
- Ensure your environment variables and paths are set correctly during deployment. This setup ensures the flow runs as expected when deployed.
For further information about deployments, you can refer to the Prefect deployment guides:
- Prefect Deployment Guide
- Deployment Tutorial
If your tasks are integrated to write results to cloud storage or other destinations, refer to the respective Prefect documentation for those integrations.
Let me know if you need further assistance or have more specific questions!aviv
09/16/2024, 7:05 AMMarvin
09/16/2024, 7:06 AMpython
import os
from prefect import flow, task
import pandas as pd
# Task to save a dataframe as a CSV file
@task
def save_csv(data: pd.DataFrame, relative_path: str):
# Ensure that the directory exists
full_path = os.path.join(os.path.expanduser("~"), "Desktop/myproject", relative_path)
directory = os.path.dirname(full_path)
os.makedirs(directory, exist_ok=True)
# Save data to CSV
data.to_csv(full_path, index=False)
print(f"File saved to {full_path}")
# Flow definition
@flow
def my_flow():
# Sample data
data1 = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
data2 = pd.DataFrame({'x': [7, 8, 9], 'y': [10, 11, 12]})
# Save CSV files
save_csv(data1, ".myfolder/mysource_name/output1.csv")
save_csv(data2, ".myfolder/mysource_name/output2.csv")
# Deployment definition (if needed)
if __name__ == "__main__":
deployment = Deployment.build_from_flow(
flow=my_flow,
name="My Flow Deployment",
work_pool_name="my-work-pool"
)
deployment.apply()
### Explanation
1. Explicit Absolute Paths: The save_csv
task builds the absolute path by combining the base directory (Desktop/myproject
) with the relative path (.myfolder/mysource_name/output1.csv
).
2. Dynamic Path Creation: The task ensures that any necessary directories are created with os.makedirs(directory, exist_ok=True)
.
3. Consistent Saved Path: By enforcing the use of a consistent base directory, you can avoid having files saved in temporary deployment directories.
### Deployment Configurations
When you deploy your flow, ensure that the deployment runs in an environment that has access to the required directories and paths. Verify that the base directory (Desktop/myproject
) exists and has the correct permissions.
### Additional Information
For more detailed customization, Prefect allows the use of blocks and storage options:
- Prefect Blocks require appropriate filesystem libraries and can help manage configuration and storage outside the local filesystem.
- Big Data Handling describes methods to save results directly to disk or cloud providers to reduce memory usage.
Let me know if this helps or if you need further assistance!aviv
09/16/2024, 7:31 AMMarvin
09/16/2024, 7:32 AMos.chdir
in Tasks
You can set the current working directory to the desired directory at the beginning of your flow or within individual tasks.
### Example with os.chdir
python
import os
from prefect import flow, task
import pandas as pd
# Task to set working directory
@task
def set_working_directory(path: str):
os.makedirs(path, exist_ok=True)
os.chdir(path)
print(f"Changed working directory to {os.getcwd()}")
# Task to save a dataframe as a CSV file
@task
def save_csv(data: pd.DataFrame, filename: str):
data.to_csv(filename, index=False)
print(f"File saved to {os.path.abspath(filename)}")
# Flow definition
@flow
def my_flow():
# Change working directory
set_working_directory("/Users/username/Desktop/myproject")
# Sample data
data1 = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
data2 = pd.DataFrame({'x': [7, 8, 9], 'y': [10, 11, 12]})
# Save CSV files
save_csv(data1, ".myfolder/mysource_name/output1.csv")
save_csv(data2, ".myfolder/mysource_name/output2.csv")
# Deployment definition (if needed)
if __name__ == "__main__":
deployment = Deployment.build_from_flow(
flow=my_flow,
name="My Flow Deployment",
work_pool_name="my-work-pool"
)
deployment.apply()
### Explanation:
1. set_working_directory Task: This task ensures that the working directory is explicitly set to /Users/username/Desktop/myproject
at the start of the flow. Change this directory path to match your actual desired path.
2. save_csv Task: This task saves the CSV file in the specified directory.
### Other Considerations:
1. Environment Variables and Configuration:
- Ensure your environment variables or virtual environment configurations are not redirecting file paths.
- You can override job variables such as env
to control the execution environment more precisely as mentioned here.
2. Check Prefect’s Working Directory Configuration:
- Understand how your Prefect deployment environment handles working directories. Check if additional configurations are redirecting file paths.
3. Use The Prefect UI to Debug:
- Utilize the Prefect UI to monitor and debug the paths being used during task executions.
If you still face issues, consider creating an issue on the Prefect GitHub or consulting Prefect’s support, detailing your deployment configuration and environment settings.
If you need further assistance, feel free to ask!aviv
09/16/2024, 7:35 AMMarvin
09/16/2024, 7:35 AMos.chdir
in Your Flow/Tasks:
Ensure the working directory is set explicitly in your task or at the beginning of your flow. This method can help but might still be overridden by deployment environments.
2. Using Deployment Configuration:
Prefect allows specifying the working directory directly in your deployment configuration using the prefect.yaml
file or within your deployment script.
### Example Prefect Deployment
Here’s how to set the working directory in your prefect.yaml
configuration file to avoid temporary directories:
1. prefect.yaml Configuration:
yaml
name: my_project
prefect-version: 2.0.0
build: null
push: null
pull:
- prefect.deployments.steps.set_working_directory:
directory: "/Users/username/Desktop/myproject"
deployments:
- name: my_flow_deployment
entrypoint: flows/my_flow.py:my_flow
work_pool:
name: my-work-pool
job_variables:
image: prefecthq/prefect:2.0.0
image_pull_policy: Always
service_account_name: prefect-service
finished_job_ttl: 300
2. Using Deployment Script:
- Ensure your deployment script references the correct working directory.
python
from prefect.deployments import Deployment
from prefect.deployments.steps import set_working_directory
from flows.my_flow import my_flow
directory = "/Users/username/Desktop/myproject"
deployment = Deployment.build_from_flow(
flow=my_flow,
name="My Flow Deployment",
work_pool_name="my-work-pool",
steps=[
set_working_directory(directory=directory)
]
)
deployment.apply()
3. Task with Specific Directory:
If necessary, every task can also specify the directory:
python
import os
from prefect import flow, task
import pandas as pd
@task
def save_csv(data: pd.DataFrame, relative_path: str):
directory = "/Users/username/Desktop/myproject"
os.makedirs(os.path.join(directory, os.path.dirname(relative_path)), exist_ok=True)
file_path = os.path.join(directory, relative_path)
data.to_csv(file_path, index=False)
print(f"File saved to {file_path}")
@flow
def my_flow():
data1 = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
save_csv(data1, ".myfolder/mysource_name/output1.csv")
if __name__ == "__main__":
my_flow()
### Debugging Steps:
- Check Deployment Logs: Ensure your deployments show the correct working directory being set by reviewing logs in the Prefect UI or deployment logs.
- Explicit Directories: Always specify absolute paths rather than relying on the current working directory.
By configuring the working directory through deployment configurations and explicitly in tasks when necessary, you can ensure that files are saved to your desired directories and not the temporary directories used by the deployment environment.
If you still encounter issues, it could be an environment-specific configuration that needs further debugging based on your deployment setup.aviv
09/16/2024, 8:18 AMMarvin
09/16/2024, 8:19 AMsteps
field directly; steps should be specified within the prefect.yaml
configuration file or as part of your deployment script in a structured way.
Here’s a corrected approach to explicitly set the working directory using the prefect.yaml
configuration and the deployment script without encountering validation errors:
### Correct Approach Using prefect.yaml
yaml
name: my_project
prefect-version: 2.0.0
pull:
- prefect.deployments.steps.set_working_directory:
directory: "/Users/username/Desktop/myproject"
deployments:
- name: my_flow_deployment
version: latest
entrypoint: "flows/my_flow.py:my_flow"
work_pool:
name: my-work-pool
description: "My flow deployment"
### Correct Approach Using Deployment Script
For your deployment script, ensure configurations are properly applied. Here’s the approach without the steps
field directly in the deployment:
1. Script to Set Current Working Directory
- Set the working directory at the start of your script or within tasks to ensure the correct working setup.
2. Flow Script
python
import os
from prefect import task, flow
import pandas as pd
# Ensure you set the working directory at the start of your flow
@task
def set_working_directory(path: str):
os.makedirs(path, exist_ok=True)
os.chdir(path)
print(f"Changed working directory to {os.getcwd()}")
@task
def save_csv(data: pd.DataFrame, relative_path: str):
file_path = os.path.join(relative_path)
data.to_csv(file_path, index=False)
print(f"File saved to {file_path}")
@flow
def my_flow():
# Change working directory
set_working_directory("/Users/username/Desktop/myproject")
# Sample data
data1 = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
save_csv(data1, ".myfolder/mysource_name/output1.csv")
if __name__ == "__main__":
from prefect.deployments import Deployment
deployment = Deployment.build_from_flow(
flow=my_flow,
name="My Flow Deployment",
work_pool_name="my-work-pool"
)
deployment.apply()
### Explanation:
1. Using prefect.yaml
: Including prefect.deployments.steps.set_working_directory
in the pull
section of the Prefect configuration YAML.
2. Flow Script: Implementing a set_working_directory
task to change the directory at the flow level. Tasks like save_csv
then use this directory.
### Tips:
- Workflow Verification: After setting the working directory, verify by adding debug statements or print statements to ensure subsequent tasks operate within the correct directory.
- Environment Setup: Ensure that the directory you are pointing to exists and is accessible by the running Prefect agent and deployment nodes.
If you still encounter issues, share more details about your current deployment configuration and script setup for further assistance.aviv
09/16/2024, 8:43 AM@task
def check_working_directory():
print(f"Current Working Directory: {os.getcwd()}")
it prints this path:
Current Working Directory: /private/var/folders/fc/4ml0tmp94dg_1qrbdyhjvss40000gn/T/tmp0i14ym5nprefect
How can I override this path and my own workdir?Marvin
09/16/2024, 8:44 AMos.chdir
to change the current working directory.
### Example Implementation
Ensure the working directory is set correctly, and all paths are relative to this directory.
python
import os
from prefect import flow, task
import pandas as pd
# Task to set working directory
@task
def set_working_directory(path: str):
os.makedirs(path, exist_ok=True)
os.chdir(path)
print(f"Changed working directory to {os.getcwd()}")
# Task to save a dataframe as a CSV file
@task
def save_csv(data: pd.DataFrame, relative_path: str):
file_path = os.path.abspath(relative_path)
directory = os.path.dirname(file_path)
os.makedirs(directory, exist_ok=True) # Ensure the directory exists
data.to_csv(file_path, index=False)
print(f"File saved to {file_path}")
# Task to check current working directory (for debugging)
@task
def check_working_directory():
print(f"Current Working Directory: {os.getcwd()}")
# Flow definition
@flow
def my_flow():
# Set working directory at the beginning of your flow
set_working_directory("/Users/username/Desktop/myproject")
# Check working directory
check_working_directory()
# Sample data
data1 = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
data2 = pd.DataFrame({'x': [7, 8, 9], 'y': [10, 11, 12]})
# Save CSV files
save_csv(data1, ".myfolder/mysource_name/output1.csv")
save_csv(data2, ".myfolder/mysource_name/output2.csv")
# Deployment of the flow
if __name__ == "__main__":
from prefect.deployments import Deployment
deployment = Deployment.build_from_flow(
flow=my_flow,
name="My Flow Deployment",
work_pool_name="my-work-pool"
)
deployment.apply()
### Explanation:
1. set_working_directory
Task: This task sets the working directory at the beginning of the flow to ensure subsequent tasks run within the desired directory.
2. check_working_directory
Task: Included for debugging purposes to confirm the working directory is correctly set.
3. Using Paths Correctly: Paths are constructed relative to the set working directory to ensure consistency.
### Deploy and Run the Flow
Deploy and run this deployment to ensure everything works as expected.
### Alternative Approach: Environment Variables
You could also use environment variables to set the directory globally, but setting the directory explicitly inside the flow/tasts ensures greater control and consistency.
### Debugging Tips:
- Print Statements: Keep the check_working_directory
task to verify the directory multiple times within the flow.
- Deployment Logs: Check the Prefect UI and logs to understand if and when the directory changes unexpectedly.
By ensuring that os.chdir
is called at the start and using absolute paths, you should be able to override the temporary directory and use your specified working directory instead.aviv
09/16/2024, 8:45 AMMarvin
09/16/2024, 8:46 AMsteps
field in the deployment script (since it's not supported directly within the deployment creation), you can achieve this through the prefect.yaml
file.
Here’s how to explicitly set the working directory as part of the deployment process:
### Using prefect.yaml
Configuration
You can use steps such as set_working_directory
to set your desired path in the deployment process.
Example prefect.yaml
yaml
name: my_project
prefect-version: 2.0.0
pull:
- prefect.deployments.steps.set_working_directory:
directory: "/Users/username/Desktop/myproject"
deployments:
- name: my_flow_deployment
entrypoint: "flows/my_flow.py:my_flow"
work_pool:
name: my-work-pool
description: "My flow deployment"
In this prefect.yaml
configuration:
- pull
section: Use prefect.deployments.steps.set_working_directory
to set the working directory.
### Deployment Script Using Modified prefect.yaml
Similarly, if you are using a deployment script, you can ensure it points to this prefect.yaml
configuration or define it programmatically:
Flow Script with Deployment
python
import os
from prefect import flow, task
import pandas as pd
# Task to set working directory (as a fallback if needed)
@task
def set_working_directory(path: str):
os.makedirs(path, exist_ok=True)
os.chdir(path)
print(f"Changed working directory to {os.getcwd()}")
@task
def save_csv(data: pd.DataFrame, relative_path: str):
file_path = os.path.abspath(relative_path)
directory = os.path.dirname(file_path)
os.makedirs(directory, exist_ok=True) # Ensure the directory exists
data.to_csv(file_path, index=False)
print(f"File saved to {file_path}")
@task
def check_working_directory():
print(f"Current Working Directory: {os.getcwd()}")
@flow
def my_flow():
# Optionally, ensure the working directory if needed
set_working_directory("/Users/username/Desktop/myproject")
check_working_directory()
# Sample data
data1 = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
data2 = pd.DataFrame({'x': [7, 8, 9], 'y': [10, 11, 12]})
# Save CSV files
save_csv(data1, ".myfolder/mysource_name/output1.csv")
save_csv(data2, ".myfolder/mysource_name/output2.csv")
if __name__ == "__main__":
from prefect.deployments import Deployment
deployment = Deployment.build_from_flow(
flow=my_flow,
name="My Flow Deployment",
work_pool_name="my-work-pool"
)
deployment.apply()
### Summary:
1. prefect.yaml
Configuration: Use the pull
section to set the working directory using set_working_directory
.
yaml
pull:
- prefect.deployments.steps.set_working_directory:
directory: "/Users/username/Desktop/myproject"
2. Fallback in Flow: Optionally, set the working directory in the flow/tasks if needed for redundancy.
### Control Through Deployment
By configuring these settings in the prefect.yaml
or in the deployment script, you ensure that the files are saved in your specified directory rather than any temporary directory used by Prefect during deployment.
Ensure the deployment is created with:
sh
prefect deployment build flows/my_flow.py:my_flow -n my_flow_deployment --work-pool my-work-pool --prefect-file path/to/your/prefect.yaml
This approach helps keep the setup clean and consistent without the need to repeatedly redefine it in the flow itself.
If further issues arise, examining the deployment logs or settings in Prefect's UI can provide additional insights into directory management.aviv
09/17/2024, 8:39 AMMarvin
09/17/2024, 8:40 AMtask_input_hash
for Caching Tasks
You can use Prefect’s built-in task_input_hash
to cache tasks based on their inputs. Here’s an example:
python
import os
import pandas as pd
from datetime import timedelta
from prefect import flow, task
from prefect.tasks import task_input_hash
# Task to set the working directory
@task
def set_working_directory(path: str):
os.makedirs(path, exist_ok=True)
os.chdir(path)
print(f"Changed working directory to {os.getcwd()}")
# Task to save a dataframe as a CSV file, with caching
@task(cache_key_fn=task_input_hash, cache_expiration=timedelta(hours=1))
def save_csv(data: pd.DataFrame, relative_path: str):
file_path = os.path.abspath(relative_path)
directory = os.path.dirname(file_path)
os.makedirs(directory, exist_ok=True) # Ensure the directory exists
data.to_csv(file_path, index=False)
print(f"File saved to {file_path}")
# Task to check the current working directory
@task
def check_working_directory():
print(f"Current Working Directory: {os.getcwd()}")
# Flow definition
@flow
def my_flow():
# Set the working directory
set_working_directory("/Users/username/Desktop/myproject")
# Check working directory
check_working_directory()
# Sample data
data1 = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
data2 = pd.DataFrame({'x': [7, 8, 9], 'y': [10, 11, 12]})
# Save CSV files with caching
save_csv(data1, ".myfolder/mysource_name/output1.csv")
save_csv(data2, ".myfolder/mysource_name/output2.csv")
if __name__ == "__main__":
from prefect.deployments import Deployment
deployment = Deployment.build_from_flow(
flow=my_flow,
name="My Flow Deployment",
work_pool_name="my-work-pool"
)
deployment.apply()
### Explanation:
1. Caching with task_input_hash
:
- The save_csv
task uses task_input_hash
to determine the cache key based on its inputs. The cache expiration is set to one hour with cache_expiration=timedelta(hours=1)
.
2. Result Storage:
- You can specify result storage (local, cloud storage like S3, etc.) if needed to control where the cached results are stored, but the basic caching mechanism using task_input_hash
should suffice for many use cases.
### Adjusting Cache Storage and Policy:
You can configure cache policies for more control over storage location and isolation level:
python
from prefect import task
from prefect.cache_policies import INPUTS, TASK_SOURCE
from prefect.transactions import IsolationLevel
@task(
cache_policy=(INPUTS + TASK_SOURCE).configure(
storage="~/.prefect/cache",
locks="~/.prefect/locks",
isolation_level=IsolationLevel.SERIALIZABLE,
),
cache_key_fn=task_input_hash,
cache_expiration=timedelta(hours=1)
)
def save_csv(data: pd.DataFrame, relative_path: str):
file_path = os.path.abspath(relative_path)
directory = os.path.dirname(file_path)
os.makedirs(directory, exist_ok=True) # Ensure the directory exists
data.to_csv(file_path, index=False)
print(f"File saved to {file_path}")
### Key Points:
1. cache_key_fn
and cache_expiration
:
- Use these parameters to control caching behavior based on task inputs and set expiration times.
2. Custom Cache Policies:
- By configuring cache policies, you can specify storage locations, isolation levels, and locking mechanisms to have more granular control over caching.
3. Debug and Verify:
- Use tools like check_working_directory
task or Prefect’s UI to verify that caching behaves as expected during flow execution.Marvin
09/17/2024, 8:40 AMaviv
09/17/2024, 8:47 AMMarvin
09/17/2024, 8:48 AMcache_key_fn
to invalidate the cache manually when needed.
3. Deleting Cached Data (if using a specific storage backend such as S3):
- Manually delete cached files from the storage backend.
### Example of Manual Cache Invalidation by Changing Inputs:
### Approach 1: Add a Non-Functional Parameter
Add a parameter to the task that is only used to control the cache key:
python
import os
import pandas as pd
from datetime import timedelta
from prefect import flow, task
from prefect.tasks import task_input_hash
# Task to set the working directory
@task
def set_working_directory(path: str):
os.makedirs(path, exist_ok=True)
os.chdir(path)
print(f"Changed working directory to {os.getcwd()}")
# Task to save a dataframe as a CSV file, with caching and a non-functional cache control parameter
@task(cache_key_fn=task_input_hash, cache_expiration=timedelta(hours=1))
def save_csv(data: pd.DataFrame, relative_path: str, cache_buster: int = 0):
file_path = os.path.abspath(relative_path)
directory = os.path.dirname(file_path)
os.makedirs(directory, exist_ok=True) # Ensure the directory exists
data.to_csv(file_path, index=False)
print(f"File saved to {file_path}")
# Task to check the current working directory
@task
def check_working_directory():
print(f"Current Working Directory: {os.getcwd()}")
# Flow definition
@flow
def my_flow(cache_buster: int = 0):
# Set the working directory
set_working_directory("/Users/username/Desktop/myproject")
# Check working directory
check_working_directory()
# Sample data
data1 = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
data2 = pd.DataFrame({'x': [7, 8, 9], 'y': [10, 11, 12]})
# Save CSV files with caching and cache_buster
save_csv(data1, ".myfolder/mysource_name/output1.csv", cache_buster)
save_csv(data2, ".myfolder/mysource_name/output2.csv", cache_buster)
if __name__ == "__main__":
from prefect.deployments import Deployment
deployment = Deployment.build_from_flow(
flow=my_flow,
name="My Flow Deployment",
work_pool_name="my-work-pool"
)
deployment.apply()
### Explanation:
1. cache_buster
Parameter: A non-functional parameter cache_buster
is added to the save_csv
task and the my_flow
flow. By changing the value of cache_buster
, you can force the cache key to change, which will invalidate the cache and re-run the task.
2. Updating cache_buster
: When you want to invalidate the cache and get new results, you can run the flow with a different value for cache_buster
.
### Running the Flow with Cache Invalidation:
To invalidate the cache, simply change the cache_buster
value when running the flow:
sh
# First run
prefect deployment run "My Flow Deployment" -p cache_buster=0
# Second run, which will invalidate the cache and re-run the tasks
prefect deployment run "My Flow Deployment" -p cache_buster=1
This way, changing the cache_buster
value will ensure that the cache is invalidated, and the tasks will produce new results.
If you prefer a more manual approach, you can also directly access and delete specific cached files based on your cache storage backend. This, however, requires custom handling depending on the storage method used (local, S3, etc.).
Let me know if you need more details or further assistance with this approach!aviv
09/17/2024, 9:16 AMdef custom_cache_key_fn(task, parameters):
process_name = parameters.get('process_name')
task_name = task.task.name if not process_name else f"{task.task.name}_{process_name}"
refresh_cache_list = parameters.get('cache_refresh_tasks')
if refresh_cache_list:
task.task.refresh_cache = refresh_cache_list == "all" or task_name in refresh_cache_list.split(',')
return f"{task_name}-{parameters.get('run_date')}"
is the refresh cache good enough?Marvin
09/17/2024, 9:16 AMrefresh_cache
logic looks like it can effectively handle cache invalidation based on specific conditions. However, the way you're handling the refresh_cache
could be expanded to more explicitly invalidate the cache, ensuring it won't be used when refresh_cache
is true.
### Enhancing Cache Invalidation
Here's an enhanced version of your cache key function that incorporates the cache invalidation logic more explicitly:
1. Include cache invalidation directly in the key computation.
2. Use an additional flag or a dynamic component in the cache key to forcefully invalidate cache when needed.
### Example
python
from datetime import timedelta
from prefect import task
def custom_cache_key_fn(task, parameters):
process_name = parameters.get('process_name')
task_name = task.task.name if not process_name else f"{task.task.name}_{process_name}"
refresh_cache_list = parameters.get('cache_refresh_tasks')
# Check if cache needs to be refreshed
if refresh_cache_list == "all" or (refresh_cache_list and task_name in refresh_cache_list.split(',')):
# Append a unique value to invalidate the cache, for example, a timestamp or hash
return f"{task_name}-{parameters.get('run_date')}-{task_name}-refresh-{task.task_run_id}"
return f"{task_name}-{parameters.get('run_date')}"
# Example task using the custom cache key function
@task(cache_key_fn=custom_cache_key_fn, cache_expiration=timedelta(hours=1))
def save_csv(data: pd.DataFrame, relative_path: str, process_name: str, run_date: str, cache_refresh_tasks: str = None):
file_path = os.path.abspath(relative_path)
directory = os.path.dirname(file_path)
os.makedirs(directory, exist_ok=True)
data.to_csv(file_path, index=False)
print(f"File saved to {file_path}")
### Explanation:
1. Unique Invalidation Suffix:
- When cache_refresh_tasks
indicates that the cache should be refreshed (either "all" or listing specific tasks), the function appends a unique identifier such as task.task_run_id
to the cache key. This ensures that even with the same inputs, the cache key will be different, effectively invalidating the cache for that run.
2. Dynamic Cache Key:
- Using parameters.get('run_date')
and the task's name ensures the cache key is consistent for specific parameters unless explicitly invalidated.
3. Explicit Cache Control:
- Introducing an explicit mechanism to invalidate the cache makes sure that any cache checks are bypassed precisely when needed.
### Flow and Deployment Example
Here's how this can be incorporated into a flow and deployment:
```python
import os
import pandas as pd
from prefect import flow, task
@task
def set_working_directory(path: str):
os.makedirs(path, exist_ok=True)
os.chdir(path)
print(f"Changed working directory to {os.getcwd()}")
@task(cache_key_fn=custom_cache_key_fn, cache_expiration=timedelta(hours=1))
def save_csv(data: pd.DataFrame, relative_path: str, process_name: str, run_date: str, cache_refresh_tasks: str = None):
file_path = os.path.abspath(relative_path)
directory = os.path.dirname(file_path)
os.makedirs(directory, exist_ok=True)
data.to_csv(file_path, index=False)
print(f"File saved to {file_path}")
@task
def check_working_directory():
print(f"Current Working Directory: {os.getcwd()}")
@flow
def my_flow(process_name: str, run_date: str, cache_refresh_tasks: str = None):
set_working_directory("/Users/username/Desktop/myproject")
check_working_directory()
data1 = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
save_csv(data1, ".myfolder/mysource_name/output1.csv", process_name, run_date, cache_refresh_tasks)
if name == "__main__":
from prefect.deployments import Deployment
deployment = Deployment.build_from_flow(
flow=my_flow,
name="My Flow Deployment",
work_pool_name="my-work-pool"
)Marvin
09/17/2024, 9:16 AM### Running with Cache Invalidation
To run the flow with the cache invalidation in place, specify the `cache_refresh_tasks` parameter:
```sh
# Run without invalidation (normal cache use)
prefect deployment run "My Flow Deployment" -p process_name="process1" -p run_date="2023-10-01"
# Invalidate cache for specific tasks
prefect deployment run "My Flow Deployment" -p process_name="process1" -p run_date="2023-10-01" -p cache_refresh_tasks="save_csv_process1"
### Summary
- Enhanced Cache Key Function: The custom cache key function now includes a mechanism to forcefully invalidate the cache by appending a unique identifier.
- Explicit Control: The inclusion of the cache_refresh_tasks
parameter gives you fine-grained control over when to invalidate the cache.
This setup should ensure that you can effectively manage task caching and force cache invalidation when needed. Let me know if this meets your requirements or if further refinements are necessary!aviv
09/17/2024, 11:36 AMMarvin
09/17/2024, 11:36 AMf"{task_name}-{parameters.get('run_date')}"
potentially causing problems is valid. It's crucial to ensure that the cache key generated is unique enough to avoid collisions and unintended cache hits.
### Improving Cache Key Function
Here’s an enhanced approach for cache keys:
1. Include Relevant Context: Ensure all necessary context is included in the cache key to avoid collisions.
2. Cache Expiration and Cleanup: Implement periodic checks or a mechanism to delete old cache files.
### Example
Let’s refine the custom cache key function and add some guidance on cache cleanup.
#### Custom Cache Key Function
python
from datetime import timedelta
from prefect import task, Task
def custom_cache_key_fn(task: Task, parameters: dict):
process_name = parameters.get('process_name')
task_name = task.name if not process_name else f"{task.name}_{process_name}"
refresh_cache_list = parameters.get('cache_refresh_tasks')
# Append a refresh flag to force cache invalidation
refresh_flag = "refresh" if (refresh_cache_list == "all" or (refresh_cache_list and task_name in refresh_cache_list.split(','))) else "no_refresh"
# Ensure a unique and informative cache key
return f"{task_name}-{parameters.get('run_date')}-{refresh_flag}"
# Example task using the custom cache key function
@task(cache_key_fn=custom_cache_key_fn, cache_expiration=timedelta(hours=1))
def save_csv(data: pd.DataFrame, relative_path: str, process_name: str, run_date: str, cache_refresh_tasks: str = None):
file_path = os.path.abspath(relative_path)
directory = os.path.dirname(file_path)
os.makedirs(directory, exist_ok=True)
data.to_csv(file_path, index=False)
print(f"File saved to {file_path}")
### Automated Cache Cleanup
Depending on your storage setup (local filesystem, S3, etc.), you may need different strategies to clean up old cache files.
#### Local Filesystem Cleanup Example
If you're caching locally, you can implement a cleanup task:
python
import os
import time
from prefect import task, flow
@task
def cleanup_old_cache(cache_dir: str, max_age_seconds: int):
now = time.time()
for root, dirs, files in os.walk(cache_dir):
for file in files:
file_path = os.path.join(root, file)
# Delete files older than max_age_seconds
if os.stat(file_path).st_mtime < now - max_age_seconds:
os.remove(file_path)
print(f"Deleted old cache file: {file_path}")
@flow
def my_flow(process_name: str, run_date: str, cache_refresh_tasks: str = None):
cache_dir = "/path/to/cache/dir" # Set your cache directory path
cleanup_old_cache(cache_dir, max_age_seconds=3600*24*30) # For example, cleanup cache older than 30 days
set_working_directory("/Users/username/Desktop/myproject")
check_working_directory()
data1 = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
save_csv(data1, ".myfolder/mysource_name/output1.csv", process_name, run_date, cache_refresh_tasks)
if __name__ == "__main__":
from prefect.deployments import Deployment
deployment = Deployment.build_from_flow(
flow=my_flow,
name="My Flow Deployment",
work_pool_name="my-work-pool"
)
deployment.apply()
### SummaryMarvin
09/17/2024, 11:36 AMaviv
09/17/2024, 11:39 AMMarvin
09/17/2024, 11:40 AMpython
import os
import glob
def delete_cache_files(cache_dir: str, task_name: str):
# Pattern matching for cached files to delete
cache_pattern = os.path.join(cache_dir, f"{task_name}*")
cache_files = glob.glob(cache_pattern)
if not cache_files:
print(f"No cache files found for task: {task_name}")
return
for cache_file in cache_files:
try:
os.remove(cache_file)
print(f"Deleted cache file: {cache_file}")
except Exception as e:
print(f"Failed to delete cache file: {cache_file}. Reason: {e}")
# Example usage
delete_cache_files("/path/to/cache/dir", "save_csv_process1")
#### Integrating Cache Deletion in Flow
You can integrate this into your Prefect flow as a task, allowing you to delete the cache before running the flow:
python
import os
import glob
from prefect import flow, task
import pandas as pd
@task
def delete_cache_files(cache_dir: str, task_name: str):
# Pattern matching for cached files to delete
cache_pattern = os.path.join(cache_dir, f"{task_name}*")
cache_files = glob.glob(cache_pattern)
if not cache_files:
print(f"No cache files found for task: {task_name}")
return
for cache_file in cache_files:
try:
os.remove(cache_file)
print(f"Deleted cache file: {cache_file}")
except Exception as e:
print(f"Failed to delete cache file: {cache_file}. Reason: {e}")
@task
def set_working_directory(path: str):
os.makedirs(path, exist_ok=True)
os.chdir(path)
print(f"Changed working directory to {os.getcwd()}")
@task(cache_key_fn=custom_cache_key_fn, cache_expiration=timedelta(hours=1))
def save_csv(data: pd.DataFrame, relative_path: str, process_name: str, run_date: str, cache_refresh_tasks: str = None):
file_path = os.path.abspath(relative_path)
directory = os.path.dirname(file_path)
os.makedirs(directory, exist_ok=True)
data.to_csv(file_path, index=False)
print(f"File saved to {file_path}")
@task
def check_working_directory():
print(f"Current Working Directory: {os.getcwd()}")
@flow
def my_flow(process_name: str, run_date: str, cache_refresh_tasks: str = None):
cache_dir = "/Users/username/.prefect/cache" # Customize your cache directory as needed
# Optionally delete cache files for the specific task
if cache_refresh_tasks:
delete_cache_files(cache_dir, f"save_csv_{process_name}")
set_working_directory("/Users/username/Desktop/myproject")
check_working_directory()
data1 = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
save_csv(data1, ".myfolder/mysource_name/output1.csv", process_name, run_date, cache_refresh_tasks)
if __name__ == "__main__":
from prefect.deployments import Deployment
deployment = Deployment.build_from_flow(
flow=my_flow,
name="My Flow Deployment",
work_pool_name="my-work-pool"
)
deployment.apply()
#### Explanation:
1. delete_cache_files
Task: Deletes cache files matching the task name pattern from the specified cache directory.
2. Flow Integration: The flow optionally deletes the cache before proceeding with the task executions if cache_refresh_tasks
indicates the cache should be refreshed.
### Triggering Cache Deletion:Marvin
09/17/2024, 11:40 AMsh
# Run and delete cache for save_csv_process1
prefect deployment run "My Flow Deployment" -p process_name="process1" -p run_date="2023-10-01" -p cache_refresh_tasks="save_csv_process1"
This setup enables you to manage your cache explicitly, ensuring that old cache files are deleted precisely when needed.
Let me know if you need more details or further assistance!aviv
09/17/2024, 11:44 AMMarvin
09/17/2024, 11:45 AMpython
from datetime import timedelta
from prefect import task, Task
def custom_cache_key_fn(task: Task, parameters: dict):
process_name = parameters.get('process_name')
task_name = task.name if not process_name else f"{task.name}_{process_name}"
refresh_cache_list = parameters.get('cache_refresh_tasks', '')
# Append a refresh flag to force cache invalidation
refresh_flag = "refresh" if (refresh_cache_list == "all" or (refresh_cache_list and task_name in refresh_cache_list.split(','))) else "no_refresh"
# Ensure a unique and informative cache key
return f"{task_name}-{parameters.get('run_date')}-{refresh_flag}"
# Example task using the custom cache key function
@task(cache_key_fn=custom_cache_key_fn, cache_expiration=timedelta(hours=1))
def save_csv(data: pd.DataFrame, relative_path: str, process_name: str, run_date: str, cache_refresh_tasks: str = None):
file_path = os.path.abspath(relative_path)
directory = os.path.dirname(file_path)
os.makedirs(directory, exist_ok=True)
data.to_csv(file_path, index=False)
print(f"File saved to {file_path}")
#### Cache Deletion Task
```python
import os
import glob
from prefect import task, flow
import pandas as pd
@task
def delete_cache_files(cache_dir: str, task_name: str):
# Pattern matching for cached files to delete
cache_pattern = os.path.join(cache_dir, f"{task_name}*")
cache_files = glob.glob(cache_pattern)
if not cache_files:
print(f"No cache files found for task: {task_name}")
return
for cache_file in cache_files:
try:
os.remove(cache_file)
print(f"Deleted cache file: {cache_file}")
except Exception as e:
print(f"Failed to delete cache file: {cache_file}. Reason: {e}")
@task
def set_working_directory(path: str):
os.makedirs(path, exist_ok=True)
os.chdir(path)
print(f"Changed working directory to {os.getcwd()}")
@task
def check_working_directory():
print(f"Current Working Directory: {os.getcwd()}")
@flow
def my_flow(process_name: str, run_date: str, cache_refresh_tasks: str = None):
cache_dir = "/Users/username/.prefect/cache" # Customize your cache directory as needed
# Optionally delete cache files for the specific task
if cache_refresh_tasks:
delete_cache_files(cache_dir, f"save_csv_{process_name}")
set_working_directory("/Users/username/Desktop/myproject")
check_working_directory()
data1 = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
save_csv(data1, ".myfolder/mysource_name/output1.csv", process_name, run_date, cache_refresh_tasks)
if name == "__main__":
from prefect.deployments import DeploymentMarvin
09/17/2024, 11:45 AM### Explanation:
1. *Cache Key Function with Refresh Flag*:
- Ensures the generation of new cache keys when `cache_refresh_tasks` indicates a refresh.
2. *Cache Deletion Task*:
- Explicitly deletes all cache files matching the task name pattern before running the flow.
### Running the Flow
To run the flow and delete the cache files or refresh them:
- *Deleting Cache Files*:
```sh
prefect deployment run "My Flow Deployment" -p process_name="process1" -p run_date="2023-10-01" -p cache_refresh_tasks="save_csv_process1"
This command deletes the cache before running the flow.
- Refreshing Cache (without Deletion):
Use the cache_refresh_tasks
parameter to ensure new results are saved, which also effectively invalidates the cache:
sh
prefect deployment run "My Flow Deployment" -p process_name="process1" -p run_date="2023-10-01" -p cache_refresh_tasks="all"
By incorporating both cache invalidation and deletion, you have robust control over your caching strategies, ensuring efficient use of resources and accurate task execution.
Let me know if you need further details or assistance!aviv
09/17/2024, 11:46 AMMarvin
09/17/2024, 11:46 AMLocalFileSystem
block to store results in a specific directory on your local file system.
2. Cloud Storage:
- Prefect supports cloud storage providers like AWS S3, Google Cloud Storage, and Azure Blob Storage for result storage.
### Example Using Local File System
Let’s configure a task to store its results in a specific local directory.
#### Step 1: Define Result Storage Block
First, define a result storage block that points to your desired directory.
python
from prefect.filesystems import LocalFileSystem
from prefect.blocks.system import Default
# Define local file system block
local_file_block = LocalFileSystem(basepath="/Users/username/.prefect/cache")
local_file_block.save("local-cache")
# Alternatively, use Default block to specify the result location in the prefect configuration
default_config_block = Default.default_config_update("local_cache", {"result_store.basepath": "/Users/username/.prefect/cache"})
default_config_block.save("local-cache-config")
#### Step 2: Use Result Storage in Task
Update the task to use this result storage block for caching.
python
import os
from datetime import timedelta
import pandas as pd
from prefect import flow, task
from prefect.filesystems import LocalFileSystem
from prefect.results import PersistedResult
# Load the local file system block
local_file_system = LocalFileSystem.load("local-cache")
def custom_cache_key_fn(task, parameters):
process_name = parameters.get('process_name')
task_name = task.name if not process_name else f"{task.name}_{process_name}"
refresh_cache_list = parameters.get('cache_refresh_tasks', '')
refresh_flag = "refresh" if (refresh_cache_list == "all" or task_name in refresh_cache_list.split(',')) else "no_refresh"
return f"{task_name}-{parameters.get('run_date')}-{refresh_flag}"
@task(result=PersistedResult(storage=local_file_system), cache_key_fn=custom_cache_key_fn, cache_expiration=timedelta(hours=1))
def save_csv(data: pd.DataFrame, relative_path: str, process_name: str, run_date: str, cache_refresh_tasks: str = None):
file_path = os.path.abspath(relative_path)
directory = os.path.dirname(file_path)
os.makedirs(directory, exist_ok=True)
data.to_csv(file_path, index=False)
print(f"File saved to {file_path}")
@task
def set_working_directory(path: str):
os.makedirs(path, exist_ok=True)
os.chdir(path)
print(f"Changed working directory to {os.getcwd()}")
@task
def check_working_directory():
print(f"Current Working Directory: {os.getcwd()}")
@flow
def my_flow(process_name: str, run_date: str, cache_refresh_tasks: str = None):
set_working_directory("/Users/username/Desktop/myproject")
check_working_directory()
data1 = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
save_csv(data1, ".myfolder/mysource_name/output1.csv", process_name, run_date, cache_refresh_tasks)
#### Step 3: Running the Deployment
When you deploy and run this flow, the task results will be stored in the specified local directory.
### Summary
1. Result Storage Block: Define and use a result storage block to control where task results are saved.
2. Local or Cloud: You can use local file systems or cloud storage depending on your requirements.
3. Configuration: Ensure that tasks are configured to use the specified result storage for caching.
This setup allows you to control and set the location of where Prefect saves the cache, making it easier to manage and access cached results.
Let me know if you need further assistance or more examples!aviv
09/17/2024, 11:48 AMMarvin
09/17/2024, 11:49 AMLocalFileSystem
for local disk storage).
2. Specifying the result storage in your tasks.
Here's a step-by-step guide to configure and use result storage in Prefect, allowing you to specify where the cache should be saved.
### Step 1: Define a Result Storage Block
First, define the result storage block. For local filesystem storage, you can create a LocalFileSystem
block.
python
from prefect.filesystems import LocalFileSystem
# Define a LocalFileSystem block pointing to the desired cache directory
local_file_system = LocalFileSystem(basepath="/Users/username/.prefect/cache")
local_file_system.save("local-cache")
### Step 2: Update Task to Use Result Storage
Update your tasks to use the defined result storage block for caching results. When defining your tasks, specify the result
argument.
python
import os
from datetime import timedelta
import pandas as pd
from prefect import flow, task
from prefect.results import PersistedResult
from prefect.filesystems import LocalFileSystem
# Load the LocalFileSystem block
local_file_system = LocalFileSystem.load("local-cache")
def custom_cache_key_fn(task, parameters):
process_name = parameters.get('process_name')
task_name = task.name if not process_name else f"{task.name}_{process_name}"
refresh_cache_list = parameters.get('cache_refresh_tasks', '')
refresh_flag = "refresh" if (refresh_cache_list == "all" or task_name in refresh_cache_list.split(',')) else "no_refresh"
return f"{task_name}-{parameters.get('run_date')}-{refresh_flag}"
@task(result=PersistedResult(storage=local_file_system), cache_key_fn=custom_cache_key_fn, cache_expiration=timedelta(hours=1))
def save_csv(data: pd.DataFrame, relative_path: str, process_name: str, run_date: str, cache_refresh_tasks: str = None):
file_path = os.path.abspath(relative_path)
directory = os.path.dirname(file_path)
os.makedirs(directory, exist_ok=True)
data.to_csv(file_path, index=False)
print(f"File saved to {file_path}")
@task
def set_working_directory(path: str):
os.makedirs(path, exist_ok=True)
os.chdir(path)
print(f"Changed working directory to {os.getcwd()}")
@task
def check_working_directory():
print(f"Current Working Directory: {os.getcwd()}")
@flow
def my_flow(process_name: str, run_date: str, cache_refresh_tasks: str = None):
set_working_directory("/Users/username/Desktop/myproject")
check_working_directory()
data1 = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
save_csv(data1, ".myfolder/mysource_name/output1.csv", process_name, run_date, cache_refresh_tasks)
if __name__ == "__main__":
from prefect.deployments import Deployment
deployment = Deployment.build_from_flow(
flow=my_flow,
name="My Flow Deployment",
work_pool_name="my-work-pool"
)
deployment.apply()
### Task Caching with Configured Storage
1. PersistedResult with Storage:
- The PersistedResult
class is used to indicate where the task results will be stored.
- The storage
argument specifies the use of the defined LocalFileSystem
block.
2. Custom Cache Key:
- The cache key is managed through custom_cache_key_fn
.
### Running the Deployment
Deploy and run your flow using the specified storage for caching:
sh
# Deploy the flow
prefect deployment build my_flow.py:my_flow -n my_flow_deployment
# Apply the deployment
prefect deployment apply my_flow_deployment-deployment.yaml
# Run the deployment
prefect deployment run my_flow_deployment
### Summary
- Define Storage Block: Create a storage block to specify where results should be cached.
- Use Storage in Task: Update tasks to use the PersistedResult
with the defined storage.
- Deploy and Run: Deploy and run the flow with the correctly specified cache location.Marvin
09/17/2024, 11:49 AMaviv
09/19/2024, 7:30 AMMarvin
09/19/2024, 7:35 AM~/.prefect
### Checking Default Path
You can check or confirm the default path being used by Prefect for caching and other directories using the Prefect configuration.
1. Default Directory Setup:
Prefect uses the home directory ~/.prefect
to store various files, including cache and logs.
2. Actual Path:
The actual path may look like this:
- On Unix-based systems (Linux, macOS): /Users/username/.prefect
- On Windows: C:\Users\username\.prefect
### Changing the Default Directory
You can override the default cache directory by specifying result storage, as detailed in the previous examples. However, here’s an overview of how you can configure Prefect to use a different directory or storage backend.
### Example: Viewing and Configuring the Cache Path
By default, Prefect should save cache files in the ~/.prefect/results
directory. You can confirm and change it as needed.
#### Check Current Configuration
python
from prefect.settings import PREFECT_HOME
print(PREFECT_HOME.value()) # This will print the path to the Prefect home directory
#### Changing the Default Path
If you want to change the default path where Prefect saves cache files, you can set a custom result storage block. Here is a quick summary of how to do this with LocalFileSystem as an example:
### Using LocalFileSystem
Storage Block (Extended Example)
1. Define a result storage block with LocalFileSystem
.
python
from prefect.filesystems import LocalFileSystem
# Define a LocalFileSystem block pointing to the desired cache directory
local_file_system = LocalFileSystem(basepath="/Users/username/custom_prefect_cache")
local_file_system.save("custom-local-cache")
2. Use the result storage block in your tasks.
python
import os
from datetime import timedelta
import pandas as pd
from prefect import flow, task
from prefect.results import PersistedResult
from prefect.filesystems import LocalFileSystem
# Load the LocalFileSystem block
local_file_system = LocalFileSystem.load("custom-local-cache")
def custom_cache_key_fn(task, parameters):
process_name = parameters.get('process_name')
task_name = task.name if not process_name else f"{task.name}_{process_name}"
refresh_cache_list = parameters.get('cache_refresh_tasks', '')
refresh_flag = "refresh" if (refresh_cache_list == "all" or task_name in refresh_cache_list.split(',')) else "no_refresh"
return f"{task_name}-{parameters.get('run_date')}-{refresh_flag}"
@task(result=PersistedResult(storage=local_file_system), cache_key_fn=custom_cache_key_fn, cache_expiration=timedelta(hours=1))
def save_csv(data: pd.DataFrame, relative_path: str, process_name: str, run_date: str, cache_refresh_tasks: str = None):
file_path = os.path.abspath(relative_path)
directory = os.path.dirname(file_path)
os.makedirs(directory, exist_ok=True)
data.to_csv(file_path, index=False)
print(f"File saved to {file_path}")
# Example flow
@flow
def my_flow(process_name: str, run_date: str, cache_refresh_tasks: str = None):
data1 = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
save_csv(data1, ".myfolder/mysource_name/output1.csv", process_name, run_date, cache_refresh_tasks)
if __name__ == "__main__":
from prefect.deployments import Deployment
deployment = Deployment.build_from_flow(
flow=my_flow,
name="My Flow Deployment",
work_pool_name="my-work-pool"
)
deployment.apply()
### Summary
- Default Path: Prefect results and cache are typically stored in ~/.prefect/results
by default.Marvin
09/19/2024, 7:35 AMLocalFileSystem
.
- Configuration Check: Use Prefect's configuration and settings management (PREFECT_HOME
) to check and customize paths.
### Checking and Customizing Path
Check your home directory and existing settings to understand the paths being used and customize them if needed.
If you need more details or have further questions, please let me know!aviv
09/19/2024, 7:47 AMMarvin
09/19/2024, 7:48 AMdownload_data
, deduplication
, adapt_data
) and set up the caching mechanism to store cache files under their respective directories.
1. Define Local File System Storage Blocks:
2. Configure Tasks to Use Custom Result Storage:
#### Step-by-Step Implementation
### Step 1: Define Result Storage Blocks
First, define separate storage blocks for each task.
python
from prefect.filesystems import LocalFileSystem
# Define LocalFileSystem blocks for each task's cache directory
download_data_storage = LocalFileSystem(basepath="/Users/username/projects/my_project/.data/download_data")
deduplication_storage = LocalFileSystem(basepath="/Users/username/projects/my_project/.data/deduplication")
adapt_data_storage = LocalFileSystem(basepath="/Users/username/projects/my_project/.data/adapted_data")
download_data_storage.save("download-data-storage")
deduplication_storage.save("deduplication-storage")
adapt_data_storage.save("adapt-data-storage")
### Step 2: Update Tasks to Use Custom Result Storage
Specify the result storage for each task using the storage blocks defined above.
#### Updated Tasks
```python
import os
import pandas as pd
from prefect import flow, task
from datetime import timedelta
from prefect.results import PersistedResult
from prefect.filesystems import LocalFileSystem
# Load the LocalFileSystem blocks for each task
download_data_storage = LocalFileSystem.load("download-data-storage")
deduplication_storage = LocalFileSystem.load("deduplication-storage")
adapt_data_storage = LocalFileSystem.load("adapt-data-storage")
def custom_cache_key_fn(task, parameters):
process_name = parameters.get('process_name')
task_name = task.name if not process_name else f"{task.name}_{process_name}"
refresh_cache_list = parameters.get('cache_refresh_tasks', '')
refresh_flag = "refresh" if (refresh_cache_list == "all" or task_name in refresh_cache_list.split(',')) else "no_refresh"
return f"{task_name}-{parameters.get('run_date')}-{refresh_flag}"
@task(result=PersistedResult(storage=download_data_storage), cache_key_fn=custom_cache_key_fn, cache_expiration=timedelta(hours=1))
def download_data(data: pd.DataFrame, run_date: str, cache_refresh_tasks: str = None):
file_path = "/Users/username/projects/my_project/.data/download_data/download_data.csv"
directory = os.path.dirname(file_path)
os.makedirs(directory, exist_ok=True)
data.to_csv(file_path, index=False)
print(f"File saved to {file_path}")
@task(result=PersistedResult(storage=deduplication_storage), cache_key_fn=custom_cache_key_fn, cache_expiration=timedelta(hours=1))
def deduplication(data: pd.DataFrame, run_date: str, cache_refresh_tasks: str = None):
file_path = "/Users/username/projects/my_project/.data/deduplication/deduplication.csv"
directory = os.path.dirname(file_path)
os.makedirs(directory, exist_ok=True)
data.to_csv(file_path, index=False)
print(f"File saved to {file_path}")
@task(result=PersistedResult(storage=adapt_data_storage), cache_key_fn=custom_cache_key_fn, cache_expiration=timedelta(hours=1))
def adapt_data(data: pd.DataFrame, run_date: str, cache_refresh_tasks: str = None):
file_path = "/Users/username/projects/my_project/.data/adapted_data/adapted_data.csv"
directory = os.path.dirname(file_path)
os.makedirs(directory, exist_ok=True)
data.to_csv(file_path, index=False)
print(f"File saved to {file_path}")
@flow
def my_flow(run_date: str, cache_refresh_tasks: str = None):
data1 = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
download_data(data1, run_date, cache_refresh_tasks)Marvin
09/19/2024, 7:48 AM### Running the Deployments
Deploy and execute your flow:
```sh
# Deploy the flow
prefect deployment build my_flow.py:my_flow -n my_flow_deployment
# Apply the deployment
prefect deployment apply my_flow_deployment-deployment.yaml
# Run the deployment
prefect deployment run my_flow_deployment -p run_date="2023-10-01"
### Summary
- Custom Result Storage: We defined custom LocalFileSystem
storage blocks for each task to control where the cache files are saved.
- Task Configuration: Each task uses the PersistedResult
class with the relevant storage block, ensuring the results are stored in the specified directories.
- Execution: Deploy and run the flow, which will save cache and task results to the specified paths.
This approach guarantees that each task's cache files are saved in the appropriate directory specified by you. If you have any further questions or need more details, feel free to ask!aviv
09/19/2024, 8:07 AMMarvin
09/19/2024, 8:10 AMLocalFileSystem
blocks dynamically within the tasks based on the parameters.
### Example: Dynamic Result Storage Path
#### Step 1: Define and Use Dynamic Storage Blocks
We will define tasks that dynamically set their result storage paths based on provided parameters.
python
import os
import pandas as pd
from datetime import timedelta
from prefect import flow, task
from prefect.results import PersistedResult
from prefect.filesystems import LocalFileSystem
# Helper function to create a LocalFileSystem block dynamically
def create_local_file_system(basepath: str):
return LocalFileSystem(basepath=basepath)
def custom_cache_key_fn(task, parameters):
process_name = parameters.get('process_name')
task_name = task.name if not process_name else f"{task.name}_{process_name}"
refresh_cache_list = parameters.get('cache_refresh_tasks', '')
refresh_flag = "refresh" if (refresh_cache_list == "all" or task_name in refresh_cache_list.split(',')) else "no_refresh"
return f"{task_name}-{parameters.get('run_date')}-{refresh_flag}"
@task
def save_csv(data: pd.DataFrame, relative_path: str, storage_path: str, process_name: str, run_date: str, cache_refresh_tasks: str = None):
# Create a dynamic LocalFileSystem block
storage_block = create_local_file_system(basepath=storage_path)
# Use PersistedResult with the dynamically created storage block
result = PersistedResult(storage=storage_block)
# Save CSV to the specified path
file_path = os.path.abspath(relative_path)
directory = os.path.dirname(file_path)
os.makedirs(directory, exist_ok=True)
data.to_csv(file_path, index=False)
# Log and return result
print(f"File saved to {file_path}")
return result
@flow
def my_flow(run_date: str, cache_refresh_tasks: str = None):
data1 = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})
# Define paths
download_data_path = "/Users/username/projects/my_project/.data/download_data"
deduplication_path = "/Users/username/projects/my_project/.data/deduplication"
adapt_data_path = "/Users/username/projects/my_project/.data/adapted_data"
# Save CSVs
save_csv(data1, f"{download_data_path}/download_data.csv", download_data_path, "download_data", run_date, cache_refresh_tasks)
save_csv(data1, f"{deduplication_path}/deduplication.csv", deduplication_path, "deduplication", run_date, cache_refresh_tasks)
save_csv(data1, f"{adapt_data_path}/adapted_data.csv", adapt_data_path, "adapt_data", run_date, cache_refresh_tasks)
if __name__ == "__main__":
from prefect.deployments import Deployment
deployment = Deployment.build_from_flow(
flow=my_flow,
name="My Flow Deployment",
work_pool_name="my-work-pool"
)
deployment.apply()
### Explanation:
1. Helper Function: The create_local_file_system
helper function dynamically creates a LocalFileSystem
block based on the specified base path.
2. Dynamic Storage in Task: In the save_csv
task, a LocalFileSystem
block is created dynamically when the task is invoked. This block is then used for the task's result storage.
3. Parameterized Paths: Paths for storing results are passed as parameters, making the setup dynamic and flexible based on the runtime configuration.
### Running with Dynamic Paths
Deploy and run the flow, specifying any necessary parameters:
```sh
# Deploy the flow
prefect deployment build my_flow.py:my_flow -n my_flow_deployment
# Apply the deployment
prefect deployment apply my_flow_deployment-deployment.yaml
# Run the deployment with dynamic pathsMarvin
09/19/2024, 8:10 AM