Ax
08/01/2024, 10:50 AM- name: staging
version:
tags: []
description:
entrypoint: dna/orchestration/prefect/flows/tenure_predictor.py:tenure_predictor_flow
parameters: {"kwargs": {"bucket_name": "dna-mlops-sagemaker-staging"}}
work_pool:
name: dna-ecs-workpool
work_queue_name:
job_variables:
env:
INFISICAL_ENVIRONMENT: staging
schedules: []
pull: *pull_staging
Marvin
08/01/2024, 10:51 AMSignatureMismatchError
, suggests that there's a mismatch between the parameters expected by your flow function and the parameters provided in your deployment YAML.
Here’s a summary of the findings and a suggestion to resolve this:
### Key Points:
1. Mismatch Issue: The error indicates that your flow function expects specific parameters (bucket_name
, ltp_scorer_backfill
), but only kwargs
was provided in the deployment configuration.
2. Prefect Documentation: Parameters should be explicitly passed to flows rather than encapsulated inside kwargs
for deployment configurations.
3. GitHub Issues: Similar issues have been reported here and here.
### Resolution Steps:
To resolve this, you should directly specify the parameters in your deployment YAML config. Here's a corrected version:
yaml
- name: staging
version:
tags: []
description:
entrypoint: dna/orchestration/prefect/flows/tenure_predictor.py:tenure_predictor_flow
parameters: {"bucket_name": "dna-mlops-sagemaker-staging", "ltp_scorer_backfill": "value_for_backfill"}
work_pool:
name: dna-ecs-workpool
work_queue_name:
job_variables:
env:
INFISICAL_ENVIRONMENT: staging
schedules: []
pull: *pull_staging
### Points of Interest:
- Parameters Section: Replace "kwargs": { "bucket_name": "dna-mlops-sagemaker-staging"}
with each parameter explicitly listed.
- Flow Definition: Ensure your flow function signature matches the parameters provided in the deployment YAML.
### References:
- GitHub Issue discussing kwargs
pitfalls: GitHub Issue #6039
- More on flow parameter validation: GitHub Issue#14663
By specifying parameters directly in the deployment YAML, you align the configuration with the flow’s signature, resolving the SignatureMismatchError
.Ax
08/01/2024, 10:58 AMMarvin
08/01/2024, 10:58 AMyaml
- name: staging
version:
tags: []
description:
entrypoint: dna/orchestration/prefect/flows/tenure_predictor.py:tenure_predictor_flow
parameters: {"bucket_name": "dna-mlops-sagemaker-staging", "ltp_scorer_backfill": "value_for_backfill"}
work_pool:
name: dna-ecs-workpool
work_queue_name:
job_variables:
env:
INFISICAL_ENVIRONMENT: staging
schedules:
- cron: "0 12 * * *"
timezone: "America/New_York"
active: true
pull: *pull_staging
### Explanation
- Cron Schedule: This cron schedule will trigger the deployment at noon every day ("0 12 * * *"
).
- Timezone: The timezone is set to "America/New_York"
. Adjust the timezone as needed.
- Active: Setting active: true
ensures the schedule is active.
### References
- You can find more details on scheduling in Prefect's documentation here.
Is there anything else you need help with?Ax
08/01/2024, 12:23 PMMarvin
08/01/2024, 12:23 PMSignatureMismatchError
indicates that your flow function expects args
and kwargs
, but specific parameters were provided in your deployment configuration. This happens when your flow is built to accept **kwargs
, and you need to pass the parameters accordingly.
### Resolution Steps
1. Flow Function: Ensure that the flow function is designed to accept **kwargs
.
2. Deployment Configuration: You must pass a JSON object under the kwargs
key in your deployment YAML.
### Adjusted Flow and Deployment Configuration
Flow Function Example:
python
from prefect import flow, get_run_logger
@flow
def tenure_predictor_flow(**kwargs):
logger = get_run_logger()
bucket_name = kwargs.get("bucket_name")
ltp_scorer_backfill = kwargs.get("ltp_scorer_backfill")
<http://logger.info|logger.info>(f"Bucket Name: {bucket_name}")
<http://logger.info|logger.info>(f"LTP Scorer Backfill: {ltp_scorer_backfill}")
Updated Deployment Configuration:
yaml
- name: staging
version:
tags: []
description:
entrypoint: dna/orchestration/prefect/flows/tenure_predictor.py:tenure_predictor_flow
parameters: {"kwargs": {"bucket_name": "dna-mlops-sagemaker-staging", "ltp_scorer_backfill": "value_for_backfill"}}
work_pool:
name: dna-ecs-workpool
work_queue_name:
job_variables:
env:
INFISICAL_ENVIRONMENT: staging
schedules:
- cron: "0 12 * * *"
timezone: "America/New_York"
active: true
pull: *pull_staging
### Points of Interest:
- Flow Function: tenure_predictor_flow
function is set to accept **kwargs
, retrieving specific parameters using kwargs.get()
.
- Deployment YAML: Parameters are provided inside kwargs
to match the method signature.
### References:
- GitHub Issue with Workaround: GitHub Issue #6039
- Prefect Documentation on Parameters: Prefect Docs
This should resolve the SignatureMismatchError
and enable your flow to work correctly with the specified parameters.Ax
08/01/2024, 12:27 PMMarvin
08/01/2024, 12:28 PM**kwargs
. Therefore, you should adjust your deployment YAML to match the parameter names exactly as defined in your flow.
Here’s the correctly updated deployment YAML:
yaml
- name: staging
version:
tags: []
description:
entrypoint: dna/orchestration/prefect/flows/tenure_predictor.py:my_flow
parameters:
bucket_name: "dna-mlops-sagemaker-staging"
ltp_scorer_backfill: false
work_pool:
name: dna-ecs-workpool
work_queue_name:
job_variables:
env:
INFISICAL_ENVIRONMENT: staging
schedules:
- cron: "0 12 * * *"
timezone: "America/New_York"
active: true
pull: *pull_staging
### Explanation:
- Parameters: Directly list the flow parameters (bucket_name
, ltp_scorer_backfill
) in the parameters
section of the deployment YAML.
- Cron Schedule: A cron schedule is provided to run the flow daily at noon New York time.
### Conclusion:
By aligning the deployment YAML parameters with your flow function signature, the SignatureMismatchError
should be resolved.
If you need more assistance, feel free to ask!Ax
08/01/2024, 12:28 PMMarvin
08/01/2024, 12:28 PMSignatureMismatchError
indicates that there might still be a mismatch between the parameters expected by the flow and those provided in the deployment. It's also possible that the flow's signature is being misinterpreted.
### Checklist:
1. Check Flow Signature: Ensure the flow definition matches precisely.
2. Verify Deployment YAML: Ensure the parameters in the YAML match the function signature exactly.
3. Inspect Flow Loading: Ensure the entrypoint is correctly leading to the proper flow function.
### Flow Function:
Here's your flow function for reference:
python
from prefect import flow
@flow(name="my flow")
def my_flow(bucket_name="dna-mlops-sagemaker-development", ltp_scorer_backfill=False):
# Your flow logic here
pass
### Corrected Deployment YAML:
yaml
- name: staging
version:
tags: []
description:
entrypoint: dna/orchestration/prefect/flows/tenure_predictor.py:my_flow
parameters:
bucket_name: "dna-mlops-sagemaker-staging"
ltp_scorer_backfill: false
work_pool:
name: dna-ecs-workpool
work_queue_name:
job_variables:
env:
INFISICAL_ENVIRONMENT: staging
schedules:
- cron: "0 12 * * *"
timezone: "America/New_York"
active: true
pull: *pull_staging
### Debugging Steps:
1. Flow Definition:
python
from prefect import flow, get_run_logger
@flow(name="my flow")
def my_flow(bucket_name="dna-mlops-sagemaker-development", ltp_scorer_backfill=False):
logger = get_run_logger()
<http://logger.info|logger.info>(f"Bucket Name: {bucket_name}")
<http://logger.info|logger.info>(f"LTP Scorer Backfill: {ltp_scorer_backfill}")
# Additional flow logic
2. Full YAML Inspection:
Ensure the YAML isn't splitting parameters improperly.
yaml
- name: staging
version:
tags: []
description:
entrypoint: dna/orchestration/prefect/flows/tenure_predictor.py:my_flow
parameters:
bucket_name: "dna-mlops-sagemaker-staging"
ltp_scorer_backfill: false
work_pool:
name: dna-ecs-workpool
work_queue_name:
job_variables:
env:
INFISICAL_ENVIRONMENT: staging
schedules:
- cron: "0 12 * * *"
timezone: "America/New_York"
active: true
pull: *pull_staging
### Common Pitfalls:
- Parameter Names: Ensure no typos in parameter names in both flow function and deployment YAML.
- YAML Syntax: Ensure correct indentation and structure.
### Reference Links:
- Prefect Docs on Parameters: Prefect Docs
- Related GitHub Issues: GitHub Issue #14663
This should help resolve the mismatch if everything is correctly aligned. Please check and let me know if you encounter further issues.Bring your towel and join one of the fastest growing data communities. Welcome to our second-generation open source orchestration platform, a completely rethought approach to dataflow automation.
Powered by