Walter Cavinaw
07/18/2024, 8:00 PMMarvin
07/18/2024, 8:00 PMpython
from prefect import flow, task
from prefect_gcp import BigQuery
from google.cloud import bigquery
@task
def process_date(date):
# Your logic to process data for the given date
@flow
def dynamic_flow(start_date, end_date):
dates = pd.date_range(start_date, end_date)
tasks = [process_date(date) for date in dates]
return tasks
dynamic_flow("2023-01-01", "2023-01-31")
BigQuery Table Generation:
python
@task
def create_bigquery_table():
client = bigquery.Client()
schema = [
bigquery.SchemaField("name", "STRING"),
bigquery.SchemaField("age", "INTEGER"),
]
table_id = "your-project.your_dataset.your_table"
table = bigquery.Table(table_id, schema=schema)
table = client.create_table(table)
print(f"Created table {table.project}.{table.dataset_id}.{table.table_id}")
@flow
def bigquery_flow():
create_bigquery_table()
bigquery_flow()
Tracking Task State:
Prefect handles task state tracking automatically. You can use this information to monitor task progress and handle retries or failures.
Here are the relevant links for deeper details:
* Dynamic Task Creation: https://docs.prefect.io/latest/guides/automations/
* BigQuery Integration: https://docs.prefect.io/latest/integrations/prefect-gcp/bigquery/
This approach should help you replicate the behavior of Dagster's DataAsset in Prefect.Walter Cavinaw
07/18/2024, 8:01 PMMarvin
07/18/2024, 8:02 PM