Slackbot
07/18/2024, 2:24 PMMarvin
07/18/2024, 2:24 PMcreate_docker_container
function within the Prefect context. I'll look up relevant documentation and any related GitHub issues to give you the most accurate and up-to-date information.
Let's proceed with the following steps:
1. Search the Prefect documentation for "create_docker_container".
2. Search GitHub issues in the "prefecthq/prefect" repository for any mentions of "create_docker_container".
I'll start by running these queries.
### Documentation Details:
The create_docker_container
function is used to create a Docker container without starting it. It is similar to the docker create
command. Here is some detailed information:
- Parameters:
- image (str): The image to run. (required)
- command (Optional[Union[str, List[str]]): The command(s) to run in the container. (default: None)
- name (Optional[str]): The name for this container. (default: None)
- detach (Optional[bool]): Run container in the background. (default: None)
- docker_host (Optional[DockerHost]): Settings for interacting with a Docker host. (default: None)
- entrypoint (Optional[Union[str, List[str]]): The entrypoint for the container. (default: None)
- environment (Optional[Union[Dict[str, str], List[str]]]): Environment variables to set inside the container, as a dictionary or a list of strings in the format ["SOMEVARIABLE=xxx"]
. (default: None)
- create_kwargs (Dict[str, Any]): Additional keyword arguments to pass. (default: {})
- Returns:
- Container: A Docker Container object.
For more detailed examples and a comprehensive guide, you can visit the Prefect documentation.
### GitHub Issues:
Surprisingly, there were no relevant issues found on GitHub concerning create_docker_container
.
If you have any more specific questions or need further assistance on this topic, feel free to ask!Marvin
07/18/2024, 2:24 PMcommand
or environment
inputs variable for each flow run, you can parameterize these inputs using Prefect's Parameter
concept. This allows you to pass different values for these parameters each time the flow is executed.
Here's an example of how you can achieve this:
python
from prefect import flow, task, Parameter
from prefect_docker.containers import create_docker_container
@task
def run_container(image: str, command: str, environment: dict):
container = create_docker_container(
image=image,
command=command,
environment=environment
)
container.start()
@flow
def create_docker_container_flow():
image = Parameter("image", default="prefecthq/prefect:latest")
command = Parameter("command", default="echo 'Hello, World!'")
environment = Parameter("environment", default={"ENV_VAR": "value"})
run_container(image, command, environment)
if __name__ == "__main__":
create_docker_container_flow()
### How to Run:
To execute the flow with different parameters, you can use the Prefect CLI or script it:
bash
prefect deployment build flow.py:create_docker_container_flow --name my-flow-deployment
prefect deployment apply create_docker_container_flow-deployment.yaml
prefect deployment run "create_docker_container_flow/my-flow-deployment" -p '{"command": "echo 'Different Command'", "environment": {"NEW_ENV_VAR": "new_value"}}'
### Links for Reference:
- Documentation on Parameters
- Prefect CLI Documentation
By using the Parameter
class, you can flexibly adjust the inputs for command
and environment
for each flow run, thus achieving dynamic behavior.Dijar Vrella
07/18/2024, 2:32 PMMarvin
07/18/2024, 2:32 PMParameter
class in this context to make the command
and environment
inputs adjustable for each flow run. Here’s how you can modify your code to incorporate the Parameter
class:
1. Define the parameters at the flow level.
2. Pass these parameters to the create_container
task.
Here's the revised code:
python
from prefect import flow, task, Parameter, get_run_logger
from prefect_docker.containers import create_docker_container
@task
async def create_container(image: str, command: list, environment: list):
logger = get_run_logger()
<http://logger.info|logger.info>("Creating a container with the specified flags...")
container = await create_docker_container(
image=image,
command=command,
environment=environment
)
container.start()
@flow
def create_docker_container_flow():
image = Parameter("image", default="seedooinsights/build:latest")
command = Parameter("command", default=["bash", "-c", "./train.sh", "/seedoodata/datasets/data/traffic_lights/data.pkl"])
environment = Parameter("environment", default=[
"MKL_NUM_THREADS=$MKL_NUM_THREADS",
"NUMBA_NUM_THREADS=$NUMBA_NUM_THREADS",
"NUMBA_THREADING_LAYER=$NUMBA_THREADING_LAYER",
"OMP_NUM_THREADS=$OMP_NUM_THREADS",
"OPENBLAS_NUM_THREADS=$OPENBLAS_NUM_THREADS",
"SEEDOO_DB_IP=$SEEDOO_DB_IP",
"SEEDOO_DB_PORT=$SEEDOO_DB_PORT",
"SEEDOO_PRINT_SQL_DEBUG=$SEEDOO_PRINT_SQL_DEBUG",
])
create_container(image, command, environment)
if __name__ == "__main__":
create_docker_container_flow()
### How to Run:
To run the flow with different parameters, you can use the Prefect CLI or script it:
bash
prefect deployment build flow.py:create_docker_container_flow --name my-flow-deployment
prefect deployment apply create_docker_container_flow-deployment.yaml
prefect deployment run "create_docker_container_flow/my-flow-deployment" -p '{"command": ["bash", "-c", "echo Different Command"], "environment": ["ENV_VAR1=value1", "ENV_VAR2=value2"]}'
### Key Points:
1. Defining Parameters: image
, command
, and environment
are defined as parameters at the flow level.
2. Passing Parameters: These parameters are then passed to the create_container
task.
3. Running with Different Parameters: Use the Prefect CLI to provide different values for command
and environment
.
References:
- Prefect Parameters Documentation
- Prefect CLI Documentation
By following this approach, you can flexibly adjust the command
and environment
inputs for each flow run.Dijar Vrella
07/18/2024, 2:39 PMMarvin
07/18/2024, 2:40 PMprefect deployment run
command with the -p
flag to specify the new parameter values.
Here's the step-by-step process:
1. Identify the deployment name: Ensure you know the name of your existing deployment.
2. Run the deployment with overridden parameters: Use the Prefect CLI to run the deployment and pass the new parameter values.
Here's an example:
bash
prefect deployment run "create_docker_container_flow/my-existing-deployment" -p '{"command": ["bash", "-c", "new_command"], "environment": ["NEW_ENV_VAR=new_value"]}'
### Breakdown:
- Deployment Name: "create_docker_container_flow/my-existing-deployment"
is the full name of your deployment.
- Overridden Parameters: Use the -p
flag followed by a JSON string representing the new parameter values.
For your specific case, you might do something like:
bash
prefect deployment run "create_docker_container_flow/my-existing-deployment" -p '{"command": ["bash", "-c", "./train.sh", "/seedoodata/datasets/data/traffic_lights/new_data.pkl"], "environment": ["NEW_VAR1=value1", "NEW_VAR2=value2"]}'
### Example of the Original Flow and Task Code
python
from prefect import flow, task, Parameter, get_run_logger
from prefect_docker.containers import create_docker_container
@task
async def create_container(image: str, command: list, environment: list):
logger = get_run_logger()
<http://logger.info|logger.info>("Creating a container with the specified flags...")
container = await create_docker_container(
image=image,
command=command,
environment=environment
)
container.start()
@flow
def create_docker_container_flow():
image = Parameter("image", default="seedooinsights/build:latest")
command = Parameter("command", default=["bash", "-c", "./train.sh", "/seedoodata/datasets/data/traffic_lights/data.pkl"])
environment = Parameter("environment", default=[
"MKL_NUM_THREADS=$MKL_NUM_THREADS",
"NUMBA_NUM_THREADS=$NUMBA_NUM_THREADS",
"NUMBA_THREADING_LAYER=$NUMBA_THREADING_LAYER",
"OMP_NUM_THREADS=$OMP_NUM_THREADS",
"OPENBLAS_NUM_THREADS=$OPENBLAS_NUM_THREADS",
"SEEDOO_DB_IP=$SEEDOO_DB_IP",
"SEEDOO_DB_PORT=$SEEDOO_DB_PORT",
"SEEDOO_PRINT_SQL_DEBUG=$SEEDOO_PRINT_SQL_DEBUG",
])
create_container(image, command, environment)
if __name__ == "__main__":
create_docker_container_flow()
### Key Points
1. JSON String: Ensure the parameters passed via the -p
flag are correctly formatted JSON.
2. Prefect CLI: Use prefect deployment run
to execute the deployment with the new parameters.
For more details on running deployments and overriding parameters, you can refer to the Prefect CLI documentation:
- Prefect CLI Documentation
By using the CLI in this manner, you can override parameters for any existing deployment seamlessly.Dijar Vrella
07/18/2024, 3:08 PMMarvin
07/18/2024, 3:08 PMupdate the trigger-flow.py so that I can make these parameters injected on run-time:from prefect.client.orchestration import get_client from prefect.client.schemas.filters import FlowRunFilter, LogFilter import asyncio async def trigger_deployment(): async with get_client() as client: # Fetch the last deployment deployments = await client.read_deployments() last_deployment = deployments[-1] # Assuming this is the correct logic to fetch the last one print(f"Last Deployment ID: {last_deployment.id}") # Run the last deployment flow_run = await client.create_flow_run_from_deployment( deployment_id=last_deployment.id ) print(f"Flow Run ID: {flow_run.id}") # Wait for flow run to complete (simple polling logic) while True: flow_run_state = (await client.read_flow_run(flow_run.id)).state.name if flow_run_state in {"Completed", "Failed", "Cancelled"}: break print(f"Current state: {flow_run_state}. Waiting to complete...") await asyncio.sleep(10) # Retrieve logs from the flow run logs_filter = LogFilter(flow_run_id={"any_": [str(flow_run.id)]}) logs = await client.read_logs(log_filter=logs_filter) for log in logs: print(f"{log.timestamp} - {log.level}: {log.message}") # Run the
Marvin
07/18/2024, 3:10 PMtrigger-flow.py
script to allow injection of parameters at runtime, you need to modify the create_flow_run_from_deployment
function call to include parameters. You can pass these parameters dynamically via command line arguments, environment variables, or any other method you prefer.
Here's an example where we'll pass the parameters through the command line using the argparse
library:
python
from prefect.client.orchestration import get_client
from prefect.client.schemas.filters import FlowRunFilter, LogFilter
import asyncio
import argparse
import json
async def trigger_deployment(params):
async with get_client() as client:
# Fetch the last deployment
deployments = await client.read_deployments()
last_deployment = deployments[-1] # Assuming this is the correct logic to fetch the last one
print(f"Last Deployment ID: {last_deployment.id}")
flow_run = await client.create_flow_run_from_deployment(
deployment_id=last_deployment.id,
parameters=params
)
print(f"Flow Run ID: {flow_run.id}")
while True:
flow_run_state = (await client.read_flow_run(flow_run.id)).state.name
if flow_run_state in {"Completed", "Failed", "Cancelled"}:
break
print(f"Current state: {flow_run_state}. Waiting to complete...")
await asyncio.sleep(10)
logs_filter = LogFilter(flow_run_id={"any_": [str(flow_run.id)]})
logs = await client.read_logs(log_filter=logs_filter)
for log in logs:
print(f"{log.timestamp} - {log.level}: {log.message}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Trigger a deployment with dynamic parameters.')
parser.add_argument('-p', '--params', type=str, required=True, help='JSON string of the parameters to override.')
args = parser.parse_args()
params = json.loads(args.params) # Ensure the JSON string is converted to a dictionary
# Run the asyncio event loop
asyncio.run(trigger_deployment(params))
### Example Usage:
To run your script and pass the parameters via the command line:
bash
python trigger-flow.py --params '{"command": ["bash", "-c", "new_command"], "environment": ["NEW_ENV_VAR=new_value"]}'
### Key Points:
1. Arguments Parsing: Uses argparse
to parse command-line arguments.
2. JSON Parsing: Converts the JSON string of parameters into a dictionary.
3. Passing Parameters: Parameters are passed to the create_flow_run_from_deployment
function.
### Code Explanation:
- Argument Parsing: The script uses argparse
to capture the JSON string from the command line.
- JSON Conversion: The provided JSON string is converted into a Python dictionary.
- Flow Run Creation: When creating the flow run, the parameters are passed into the create_flow_run_from_deployment
function.
By structuring the code this way, you can inject any parameters dynamically at runtime, making your deployments much more flexible.Dijar Vrella
07/18/2024, 3:13 PMMarvin
07/18/2024, 3:13 PMModuleNotFoundError
because the Prefect module isn't installed in your environment. Here are the steps to resolve this issue:
1. Ensure Prefect is Installed: Install Prefect using pip.
2. Run the Script: Retry running your script after installation.
### Step 1: Install Prefect
You can install Prefect using pip:
bash
pip install prefect
### Step 2: Check Installation
Ensure Prefect is installed correctly by importing it in a Python shell:
python
python3 -c "import prefect"
If you don't get any errors, Prefect is installed correctly.
### Step 3: Retry Running Your Script
After installing Prefect, retry running your trigger-flow.py
script:
bash
python3 trigger-flow.py --params '{"command": ["bash", "-c", "./train.sh", "/seedoodata/datasets/data/traffic_lights/data.pkl"], "environment": ["MKL_NUM_THREADS=5"]}'
### Additional Tips:
- Virtual Environment: It's a good practice to use a virtual environment to manage dependencies. You can create and activate a virtual environment as follows:
bash
python3 -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install prefect
- Check Python Path: Ensure that you're running the script with the correct Python interpreter where Prefect is installed.
By following these steps, you'll ensure that Prefect is installed and can be imported, which should resolve the ModuleNotFoundError
.Dijar Vrella
07/18/2024, 3:26 PMMarvin
07/18/2024, 3:26 PMAttributeError
related to lib.X509_V_FLAG_NOTIFY_POLICY
and an IndexError
because the deployments
list is empty.
### Issue 1: AttributeError
The AttributeError
related to lib.X509_V_FLAG_NOTIFY_POLICY
often occurs due to compatibility issues between your SSL library and its bindings in Python. This could be caused by outdated versions or a corrupted installation.
#### Potential Fixes:
1. Update SSL Library:
- Ensure your OpenSSL library is up-to-date. For example, on a Debian-based system:
bash
sudo apt-get update
sudo apt-get install --only-upgrade openssl
2. Update pip and its dependencies:
bash
pip install --upgrade pip
pip install --upgrade cryptography
3. Reinstall Prefect:
bash
pip uninstall prefect
pip install prefect
4. Virtual Environment:
If the issue persists, create a virtual environment to isolate dependencies and avoid system-level conflicts:
bash
python3 -m venv venv
source venv/bin/activate
pip install prefect
### Issue 2: IndexError
The IndexError
suggests that your list of deployments is empty, meaning no deployments are found. You should handle this case gracefully.
#### Fix:
Add a check to see if the deployments
list is empty before accessing the last element.
Here is the updated trigger-flow.py
script with these modifications:
python
from prefect.client.orchestration import get_client
from prefect.client.schemas.filters import FlowRunFilter, LogFilter
import asyncio
import argparse
import json
async def trigger_deployment(params):
async with get_client() as client:
# Fetch the last deployment
deployments = await client.read_deployments()
if not deployments:
print("No deployments found.")
return
last_deployment = deployments[-1] # Assuming this is the correct logic to fetch the last one
print(f"Last Deployment ID: {last_deployment.id}")
flow_run = await client.create_flow_run_from_deployment(
deployment_id=last_deployment.id,
parameters=params
)
print(f"Flow Run ID: {flow_run.id}")
while True:
flow_run_state = (await client.read_flow_run(flow_run.id)).state.name
if flow_run_state in {"Completed", "Failed", "Cancelled"}:
break
print(f"Current state: {flow_run_state}. Waiting to complete...")
await asyncio.sleep(10)
logs_filter = LogFilter(flow_run_id={"any_": [str(flow_run.id)]})
logs = await client.read_logs(log_filter=logs_filter)
for log in logs:
print(f"{log.timestamp} - {log.level}: {log.message}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Trigger a deployment with dynamic parameters.')
parser.add_argument('-p', '--params', type=str, required=True, help='JSON string of the parameters to override.')
args = parser.parse_args()
params = json.loads(args.params) # Ensure the JSON string is converted to a dictionary
# Run the asyncio event loop
asyncio.run(trigger_deployment(params))
### Key Points:
1. Check for Empty Deployments List: Added a check to ensure the deployments
list is not empty.
2. Exception Handling: Gracefully exit if no deployments are found.
Try running the updated script after ensuring your environment is correctly set up, and if the SSL issue persists, consider the suggested fixes for updating your SSL library and dependencies.Dijar Vrella
07/18/2024, 3:28 PMMarvin
07/18/2024, 3:29 PMread_deployments()
returns.
Here's an updated version of the script with additional logging and handling for troubleshooting purposes:
python
from prefect.client.orchestration import get_client
from prefect.client.schemas.filters import FlowRunFilter, LogFilter
import asyncio
import argparse
import json
async def trigger_deployment(params):
async with get_client() as client:
# Fetch the deployments
deployments = await client.read_deployments()
# Debugging
print(f"Deployments fetched: {deployments}")
if not deployments:
print("No deployments found.")
return
# Assuming fetching the last one is what you want
last_deployment = deployments[-1]
print(f"Last Deployment ID: {last_deployment.id}")
flow_run = await client.create_flow_run_from_deployment(
deployment_id=last_deployment.id,
parameters=params
)
print(f"Flow Run ID: {flow_run.id}")
while True:
flow_run_state = (await client.read_flow_run(flow_run.id)).state.name
if flow_run_state in {"Completed", "Failed", "Cancelled"}:
break
print(f"Current state: {flow_run_state}. Waiting to complete...")
await asyncio.sleep(10)
logs_filter = LogFilter(flow_run_id={"any_": [str(flow_run.id)]})
logs = await client.read_logs(log_filter=logs_filter)
for log in logs:
print(f"{log.timestamp} - {log.level}: {log.message}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Trigger a deployment with dynamic parameters.')
parser.add_argument('-p', '--params', type=str, required=True, help='JSON string of the parameters to override.')
args = parser.parse_args()
params = json.loads(args.params) # Ensure the JSON string is converted to a dictionary
# Run the asyncio event loop
asyncio.run(trigger_deployment(params))
### Points to Check:
1. API Connection:
- Ensure your script is connecting to the correct Prefect API server. Double-check your .prefect/config.toml
file or environment variables if you have special configurations.
2. Permissions:
- Ensure the API client has the necessary permissions to fetch deployments.
3. Logs and Debugging:
- The additional print statements will help verify what client.read_deployments()
is returning.
4. Deployment Filters:
- If you need to apply specific filters, adjust them accordingly to narrow down the search.
### Direct Deployment Run:
If necessary, you could also try bypassing the dynamic fetching and directly use the deployment ID from the UI for testing purposes:
```python
async def trigger_deployment(params):
async with get_client() as client:
deployment_id = "2eb6ef1b-76c4-4c36-9333-b1a17dc9c8d1" # Your known deployment ID
flow_run = await client.create_flow_run_from_deployment(
deployment_id=deployment_id,
parameters=params
)
print(f"Flow Run ID: {flow_run.id}")
while True:
flow_run_state = (await client.read_flow_run(flow_run.id)).state.name
if flow_run_state in {"Completed", "Failed", "Cancelled"}:
break
print(f"Current state: {flow_run_state}. Waiting to complete...")
await asyncio.sleep(10)Marvin
07/18/2024, 3:29 PMDijar Vrella
07/18/2024, 3:36 PMMarvin
07/18/2024, 3:36 PMbash
prefect deployment run 'pull-and-run-image/train_flow' -p '{"command": ["bash", "-c", "./train.sh", "/seedoodata/datasets/data/traffic_lights/new_data.pkl"], "environment": ["MKL_NUM_THREADS=5", "NUMBA_NUM_THREADS=3"]}'
Ensure your terminal or shell supports this formatting. If not, you might need to adjust the escaping based on your shell. Below are different examples for various shells:
### Bash/Zsh
bash
prefect deployment run 'pull-and-run-image/train_flow' -p '{"command": ["bash", "-c", "./train.sh", "/seedoodata/datasets/data/traffic_lights/new_data.pkl"], "environment": ["MKL_NUM_THREADS=5", "NUMBA_NUM_THREADS=3"]}'
### Windows Command Prompt
For the Windows Command Prompt, you might have to use double quotes and escape double quotes inside the JSON string:
cmd
prefect deployment run "pull-and-run-image/train_flow" -p "{\"command\": [\"bash\", \"-c\", \"./train.sh\", \"/seedoodata/datasets/data/traffic_lights/new_data.pkl\"], \"environment\": [\"MKL_NUM_THREADS=5\", \"NUMBA_NUM_THREADS=3\"]}"
### PowerShell
In PowerShell, you might need to use double quotes and escape the inner quotes with a backslash:
powershell
prefect deployment run "pull-and-run-image/train_flow" -p '{\"command\": [\"bash\", \"-c\", \"./train.sh\", \"/seedoodata/datasets/data/traffic_lights/new_data.pkl\"], \"environment\": [\"MKL_NUM_THREADS=5\", \"NUMBA_NUM_THREADS=3\"]}'
By ensuring that the JSON string is correctly formatted and properly escaped, you should be able to pass parameters to your deployment without parsing errors. If the JSON parsing issues persist, you could also consider using a JSON file as an argument or another method to pass complex data structures.
Would you like more assistance with this, or did this solve your issue?