Mohit Singhal
07/08/2024, 12:33 PMMarvin
07/08/2024, 12:34 PMpython
from prefect import flow, task
from prefect.infrastructure.kubernetes import KubernetesJob
@task
def example_task():
print("Running task")
@flow(name="custom-pod-name-flow")
def custom_pod_name_flow():
example_task()
if __name__ == "__main__":
# Define a custom pod template
kubernetes_job = KubernetesJob(
namespace="your-namespace",
image="your-docker-image",
job_template={
"metadata": {
"name": "{{ flow_run.name }}-pod",
"labels": {
"flow": "{{ flow_run.flow_id }}"
}
}
}
)
# Deploy this flow with the custom Kubernetes job
custom_pod_name_flow.deploy(
name="custom-pod-name-deployment",
infrastructure=kubernetes_job,
apply=True
)
This code showcases how to define a Kubernetes job with a custom pod naming template that includes the flow run name. Replace "your-namespace"
and "your-docker-image"
with your actual namespace and Docker image.
### References
- Prefect API: Customizing Kubernetes Jobs
- Kubernetes API: Pod Naming
Hope this helps you get more control over your pod naming and makes it easier to find the relevant pods when issues arise! If you have any more specific requirements or run into issues, feel free to ask.Mohit Singhal
07/08/2024, 12:53 PMMarvin
07/08/2024, 12:54 PMpython
from prefect import flow, task
from prefect.infrastructure.kubernetes import KubernetesJob
import os
@task
def example_task():
print("Running task")
@flow(name="custom-pod-name-flow")
def custom_pod_name_flow(custom_name):
# Set an environment variable for the pod name
os.environ["PREFECT_JOB_NAME"] = custom_name
example_task()
if __name__ == "__main__":
# Define a custom Kubernetes job
kubernetes_job = KubernetesJob(
namespace="your-namespace",
image="your-docker-image",
job_template={
"metadata": {
"name": "{{ flow_run.name }}-{{ env.PREFECT_JOB_NAME }}",
"labels": {
"flow": "{{ flow_run.flow_id }}"
}
}
}
)
# Deploy this flow with the custom Kubernetes job
custom_pod_name_flow.deploy(
name="custom-pod-name-deployment",
infrastructure=kubernetes_job,
apply=True
)
# Run the flow with a custom name
result = custom_pod_name_flow("custom-name")
### Explanation
1. Custom Task and Flow: Define a custom task and flow. The flow takes a custom_name
parameter to influence the pod name.
2. Environmental Variable: Use environment variables like PREFECT_JOB_NAME
to customize the pod name template dynamically.
3. KubernetesJob Infrastructure: Define a custom job template and use the environment variable in the pod's metadata.
While this solution provides a pattern, you may need to adjust the specifics to better match your Kubernetes setup and naming conventions.
### References
- Prefect Docs: KubernetesJob
- Kubernetes Docs: Pod Templates
Feel free to adapt and expand upon this example to better suit your needs! If you encounter any specific challenges, please let me know.Mohit Singhal
07/08/2024, 1:08 PMMohit Singhal
07/08/2024, 1:08 PMMohit Singhal
07/08/2024, 1:08 PMMarvin
07/08/2024, 1:09 PMflow_run_name
and task_run_name
parameters, this naming does not directly propagate to Kubernetes pod names. Currently, it appears that Kubernetes pod names are generated independently of these parameters. GitHub issue.
### Why flow_run_name
Doesn't Influence Pod Names Directly
From what has been gathered:
- The flow_run_name
and task_run_name
are used within the Prefect ecosystem to label and manage specific tasks and flows.
- The Kubernetes integration relies on Prefect's agents or workers to spawn pods, and those pods are named based on Prefect-specific templates and mechanisms.
### Proposed Workaround
To influence pod names more directly, you can customize the pod template by embedding the flow run name as part of the metadata. Here’s how you can integrate it:
### Example Code
python
from prefect import flow, task
from prefect.infrastructure.kubernetes import KubernetesJob
import uuid
@task
def example_task():
print("Running task")
@flow(name="custom-pod-name-flow")
def custom_pod_name_flow():
# Create a unique custom name using the flow run name
flow_run_id = str(uuid.uuid4())
custom_name = f"flow-run-{flow_run_id}"
# Print the custom name for verification
print(f"Running flow with custom pod name: {custom_name}")
example_task()
if __name__ == "__main__":
# Define a custom Kubernetes job
kubernetes_job = KubernetesJob(
namespace="your-namespace",
image="your-docker-image",
job_template={
"metadata": {
"name": "{{ flow_run.name }}-{{ env.CUSTOM_NAME }}",
"labels": {
"flow": "{{ flow_run.flow_id }}"
}
}
}
)
# Deploy this flow with the custom Kubernetes job
custom_pod_name_flow.deploy(
name="custom-pod-name-deployment",
infrastructure=kubernetes_job,
apply=True
)
# Set the custom name when running the flow
result = custom_pod_name_flow.with_options(
run_config=KubernetesJob(
job_template={
"metadata": {
"name": f"flow-run-pod-{uuid.uuid4()}"
}
}
)
)()
### Explanation
1. Flow Definition: Define a flow and a corresponding task.
2. Custom Kubernetes Job: Create a Kubernetes job with a metadata template referencing an environment variable or a dynamically created string for the pod name.
3. Deploy the Flow: The flow deployment includes the custom Kubernetes job template.
4. Run the Flow with Custom Name: Use with_options
and run_config
to pass the dynamically created pod name.
### References
- Deployments in Prefect 2.0
- Kubernetes Job Configuration
To ensure that the pods use the provided custom names, you'll need to customize the pod templates accordingly. This approach modifies the Kubernetes pod metadata to include custom naming dynamically. If there are more specific requirements or if issues persist, further customization within the KubernetesJob templates might be necessary.Mohit Singhal
07/09/2024, 5:59 AMMarvin
07/09/2024, 5:59 AMpython
from prefect import flow, task
from prefect.deployments import Deployment
from prefect.infrastructure.kubernetes import KubernetesJob
import uuid
@task
def example_task():
print("Running task")
@flow
def custom_name_flow():
# Create a custom pod name based on flow run name or any custom logic
flow_run_name = f"flow-run-{str(uuid.uuid4())[:8]}"
print(f"Custom pod name for this flow run: {flow_run_name}")
example_task.submit()
if __name__ == "__main__":
# Define the custom Kubernetes job with the pod name logic
kubernetes_job = KubernetesJob(
name="custom-k8s-job",
namespace="your-namespace",
image="your-docker-image",
job_template={
"metadata": {
"name": f"{{ flow_run.name }}-{{ flow_run_name }}",
"labels": {
"flow": "{{ flow_run.flow_id }}"
}
}
}
)
# Create and apply the deployment
deployment = Deployment(
flow=custom_name_flow,
name="custom-k8s-deployment",
work_pool_name="your-work-pool-name",
infrastructure=kubernetes_job,
flow_run_name_template="custom-flow-run-{uuid}"
)
deployment.apply()
# Run the flow to see the customized pod name
custom_name_flow()
### Explanation
1. Flow and Task Definition: Define the flow and the task.
2. Custom Kubernetes Job: Create a KubernetesJob
object with a custom job template that includes a metadata block referencing the custom flow run name and UUID.
3. Define Deployment: Create a deployment using the custom job template and apply it. This registers the deployment with Prefect.
4. Run the Flow: Execute the flow. The pod names created should reflect the custom naming pattern.
### Considerations & Adjustments
- Adjust the job template to match your specific conventions and requirements.
- Ensure the namespace
and image
fields are correctly set to match your Kubernetes environment.
- This approach leverages the Prefect API to dynamically set the pod's metadata by utilizing the flow run name or a custom UUID.
If this approach doesn't directly fit your requirements, consider opening an enhancement request or issue with Prefect, referencing the need for more dynamic control over Kubernetes pod names generated by flow runs specifically handled with Prefect workers. For now, this workaround should help you avoid using purely random names and manage pod naming more predictably.
### References
- Prefect Kubernetes Infrastructure
- Prefect GitHub Issues: Apply custom `flow_run_name` to Kubernetes pods
Feel free to adapt the code further based on your exact use case. If you encounter any specific issues or need further refinement, just let me know!