Daniel
06/20/2024, 1:44 PM- name: xrs-hal-pipeline-deploy
tags: []
description:
entrypoint: flows/xrs_flow.py:process_xrs_data
parameters:
new_file_list: ["heathrow/parquet/CTX_JSON_PARQUET/XRS/2023-01-01_K204_JSON_XRS.parquet"]
work_pool:
name: cloud-run-work-pool
work_queue_name: default
job_variables:
image: '{{ build_image.image }}'
schedules: []
- name: mux-hal-pipeline-deploy
tags: []
description:
entrypoint: flows/mux_flow.py:process_mux_data
parameters:
new_file_list: ["heathrow/parquet/CTX_MUXLOGS_PARQUET/20230101/20230101_K204.parquet"]
work_pool:
name: cloud-run-work-pool
work_queue_name: default
job_variables:
image: '{{ build_image.image }}'
schedules: []
What are the best practices for setting up these pipelines for my production environment which will connect to a different databaseMarvin
06/20/2024, 1:44 PMI have a prefect yaml file with 3 different deployments:
- name: xrs-hal-pipeline-deploy
version:
tags: []
description:
entrypoint: flows/xrs_flow.py:process_xrs_data
parameters:
new_file_list: ["heathrow/parquet/CTX_JSON_PARQUET/XRS/2023-01-01_K204_JSON_XRS.parquet",
"heathrow/parquet/CTX_JSON_PARQUET/XRS/2023-01-01_K235_JSON_XRS.parquet"]
work_pool:
name: cloud-run-work-pool
work_queue_name: default
job_variables:
image: '{{ build_image.image }}'
schedules: []
- name: mux-hal-pipeline-deploy
version:
tags: []
description:
entrypoint: flows/mux_flow.py:process_mux_data
parameters:
new_file_list: ["heathrow/parquet/CTX_MUXLOGS_PARQUET/20230101/20230101_K204.parquet",
"heathrow/parquet/CTX_MUXLOGS_PARQUET/20230102/20230102_K549.parquet"]
work_pool:
name: cloud-run-work-pool
work_queue_name: default
job_variables:
image: '{{ build_image.image }}'
schedules: []
What are the best practices for setting up theseMarvin
06/20/2024, 1:45 PMbash
PREFECT_API_DATABASE_CONNECTION_URL='postgresql+asyncpg://<username>:<password>@<hostname>/<database_name>'
PREFECT_API_DATABASE_ECHO='False'
PREFECT_API_DATABASE_MIGRATE_ON_START='True'
PREFECT_API_DATABASE_PASSWORD='<your_password>'
Ensure you install and enable the pg_trgm
extension in PostgreSQL.
Configure Production Database
2. Environment Separation:
- Use environment variables to manage different environments (development, staging, production). These variables can hold database credentials, API keys, etc.
- Use different YAML
config files for different environments.
3. Code and Deployment Management:
- Implement a CI/CD pipeline to automate deployments. Learn more from the CI/CD Guide
- Version your flows and use distinct names for different environments.
4. Security:
- Avoid hardcoding sensitive information in your deployment files. Use services like AWS Secrets Manager, HashiCorp Vault, etc.
- Ensure secure access to database credentials.
5. Monitoring and Logging:
- Use Prefect Cloud or set up your own monitoring to keep track of flow runs and logs.
- Redirect logs to a centralized logging service (e.g., AWS CloudWatch, ELK Stack).
### Example Updated Deployment Configuration
Here's an updated example based on best practices:
yaml
- name: xrs-hal-pipeline-deploy
tags: ["production"]
description: Production deployment for XRS HAL pipeline
entrypoint: flows/xrs_flow.py:process_xrs_data
parameters:
new_file_list: ["heathrow/parquet/CTX_JSON_PARQUET/XRS/2023-01-01_K204_JSON_XRS.parquet"]
work_pool:
name: cloud-run-work-pool
work_queue_name: default
job_variables:
image: '{{ build_image.image }}'
schedules: []
- name: mux-hal-pipeline-deploy
tags: ["production"]
description: Production deployment for MUX HAL pipeline
entrypoint: flows/mux_flow.py:process_mux_data
parameters:
new_file_list: ["heathrow/parquet/CTX_MUXLOGS_PARQUET/20230101/20230101_K204.parquet"]
work_pool:
name: cloud-run-work-pool
work_queue_name: default
job_variables:
image: '{{ build_image.image }}'
schedules: []
By following these practices, you should ensure a smooth and secure production setup.Daniel
06/20/2024, 1:50 PMMarvin
06/20/2024, 1:53 PMprefect.yaml
file:
yaml
- name: xrs-hal-pipeline-deploy
tags: ["production"]
description: Production deployment for XRS HAL pipeline
entrypoint: flows/xrs_flow.py:process_xrs_data
parameters:
new_file_list: ["heathrow/parquet/CTX_JSON_PARQUET/XRS/2023-01-01_K204_JSON_XRS.parquet"]
work_pool:
name: cloud-run-work-pool
work_queue_name: default
job_variables:
image: '{{ build_image.image }}'
env:
PREFECT_API_DATABASE_CONNECTION_URL: 'postgresql+asyncpg://<username>:<password>@<hostname>/<database_name>'
PREFECT_API_DATABASE_PASSWORD: '<your_password>'
schedules: []
- name: mux-hal-pipeline-deploy
tags: ["production"]
description: Production deployment for MUX HAL pipeline
entrypoint: flows/mux_flow.py:process_mux_data
parameters:
new_file_list: ["heathrow/parquet/CTX_MUXLOGS_PARQUET/20230101/20230101_K204.parquet"]
work_pool:
name: cloud-run-work-pool
work_queue_name: default
job_variables:
image: '{{ build_image.image }}'
env:
PREFECT_API_DATABASE_CONNECTION_URL: 'postgresql+asyncpg://<username>:<password>@<hostname>/<database_name>'
PREFECT_API_DATABASE_PASSWORD: '<your_password>'
schedules: []
### 2. Use Profiles for Environment-Specific Configurations
Profiles allow you to manage environment-specific configurations separately:
- Create profiles for different environments.
- Set the environment variable PREFECT_PROFILE
to specify which profile to use.
bash
export PREFECT_PROFILE=production
When running commands, specify the profile:
bash
prefect --profile "production" deployment apply my-deployment.yaml
For detailed usage, refer to the Profiles Documentation.
### 3. Using External Secrets Management
For better security, consider storing credentials in external secrets management services:
- AWS Secrets Manager
- HashiCorp Vault
- Azure Key Vault
Configure your Prefect deployments to fetch these secrets at runtime.
### 4. Overriding Job Variables
Using the job variables to override environment settings is another way. Add environment-specific configurations directly to the job variables:
yaml
deployments:
- name: my-deployment
entrypoint: path/to/your_flow.py:your_function
work_pool:
name: your-work-pool
job_variables:
env:
EXECUTION_ENVIRONMENT: "production"
DATABASE_URL: "{{ secret('DATABASE_URL') }}"
### Resources
- Overriding Job Variables
- Database Configuration
- Settings and Profiles
By following these steps, you'll ensure your production deployments have the correct environment variables and configurations needed to connect to your production database securely.Daniel
06/20/2024, 1:58 PMMarvin
06/20/2024, 1:59 PMprefect.yaml
configurations for both your development and production environments, illustrating how to pass the required environment variables for database connection.
### Development Environment Configuration
yaml
- name: xrs-hal-pipeline-deploy-dev
tags: ["development"]
description: Development deployment for XRS HAL pipeline
entrypoint: flows/xrs_flow.py:process_xrs_data
parameters:
new_file_list: ["heathrow/parquet/CTX_JSON_PARQUET/XRS/2023-01-01_K204_JSON_XRS.parquet"]
work_pool:
name: cloud-run-work-pool
work_queue_name: default
job_variables:
image: '{{ build_image.image }}'
env:
DB_USER: 'dev_user'
DB_PASSWORD: 'dev_password'
DB_HOST: 'dev_host'
DB_PORT: '5432'
DB_NAME: 'dev_db'
DATABASE_URL: 'postgresql://{{ env('DB_USER') }}:{{ env('DB_PASSWORD') }}@{{ env('DB_HOST') }}:{{ env('DB_PORT') }}/{{ env('DB_NAME') }}'
schedules: []
- name: mux-hal-pipeline-deploy-dev
tags: ["development"]
description: Development deployment for MUX HAL pipeline
entrypoint: flows/mux_flow.py:process_mux_data
parameters:
new_file_list: ["heathrow/parquet/CTX_MUXLOGS_PARQUET/20230101/20230101_K204.parquet"]
work_pool:
name: cloud-run-work-pool
work_queue_name: default
job_variables:
image: '{{ build_image.image }}'
env:
DB_USER: 'dev_user'
DB_PASSWORD: 'dev_password'
DB_HOST: 'dev_host'
DB_PORT: '5432'
DB_NAME: 'dev_db'
DATABASE_URL: 'postgresql://{{ env('DB_USER') }}:{{ env('DB_PASSWORD') }}@{{ env('DB_HOST') }}:{{ env('DB_PORT') }}/{{ env('DB_NAME') }}'
schedules: []
### Production Environment Configuration
yaml
- name: xrs-hal-pipeline-deploy-prod
tags: ["production"]
description: Production deployment for XRS HAL pipeline
entrypoint: flows/xrs_flow.py:process_xrs_data
parameters:
new_file_list: ["heathrow/parquet/CTX_JSON_PARQUET/XRS/2023-01-01_K204_JSON_XRS.parquet"]
work_pool:
name: cloud-run-work-pool
work_queue_name: default
job_variables:
image: '{{ build_image.image }}'
env:
DB_USER: 'prod_user'
DB_PASSWORD: 'prod_password'
DB_HOST: 'prod_host'
DB_PORT: '5432'
DB_NAME: 'prod_db'
DATABASE_URL: 'postgresql://{{ env('DB_USER') }}:{{ env('DB_PASSWORD') }}@{{ env('DB_HOST') }}:{{ env('DB_PORT') }}/{{ env('DB_NAME') }}'
schedules: []
- name: mux-hal-pipeline-deploy-prod
tags: ["production"]
description: Production deployment for MUX HAL pipeline
entrypoint: flows/mux_flow.py:process_mux_data
parameters:
new_file_list: ["heathrow/parquet/CTX_MUXLOGS_PARQUET/20230101/20230101_K204.parquet"]
work_pool:
name: cloud-run-work-pool
work_queue_name: default
job_variables:
image: '{{ build_image.image }}'
env:
DB_USER: 'prod_user'
DB_PASSWORD: 'prod_password'
DB_HOST: 'prod_host'
DB_PORT: '5432'
DB_NAME: 'prod_db'
DATABASE_URL: 'postgresql://{{ env('DB_USER') }}:{{ env('DB_PASSWORD') }}@{{ env('DB_HOST') }}:{{ env('DB_PORT') }}/{{ env('DB_NAME') }}'
schedules: []
### Notes:
1. Environment Variables:
- For development: DB_USER
, DB_PASSWORD
, DB_HOST
, DB_PORT
, and DB_NAME
are set to their respective development values.
- For production: The same variables are set to production values.
2. Database Connection URL:
- The DATABASE_URL
is constructed using the environment variables for both development and production.
3. Separation of Environments:
- Deployment names are suffixed with -dev
for development and -prod
for production.
- Tags are used to distinguish between development and production environments.
This configuration helps maintain a clear and organized structure for managing different environments. Make sure to manage these secrets securely, potentially using tools like AWS Secrets Manager, HashiCorp Vault, or other secret management solutions.Daniel
06/20/2024, 2:05 PMMarvin
06/20/2024, 2:05 PMplaintext
prefect/
│
├── deployments/
│ ├── prefect_dev.yaml
│ └── prefect_prod.yaml
### Deployment Commands
- Development Deployment:
sh
prefect deployment apply prefect/deployments/prefect_dev.yaml
- Production Deployment:
sh
prefect deployment apply prefect/deployments/prefect_prod.yaml
### Example Files
#### prefect_dev.yaml
yaml
- name: xrs-hal-pipeline-deploy-dev
tags: ["development"]
description: Development deployment for XRS HAL pipeline
entrypoint: flows/xrs_flow.py:process_xrs_data
parameters:
new_file_list: ["heathrow/parquet/CTX_JSON_PARQUET/XRS/2023-01-01_K204_JSON_XRS.parquet"]
work_pool:
name: cloud-run-work-pool
work_queue_name: default
job_variables:
image: '{{ build_image.image }}'
env:
DB_USER: 'dev_user'
DB_PASSWORD: 'dev_password'
DB_HOST: 'dev_host'
DB_PORT: '5432'
DB_NAME: 'dev_db'
DATABASE_URL: 'postgresql://{{ env('DB_USER') }}:{{ env('DB_PASSWORD') }}@{{ env('DB_HOST') }}:{{ env('DB_PORT') }}/{{ env('DB_NAME') }}'
schedules: []
- name: mux-hal-pipeline-deploy-dev
tags: ["development"]
description: Development deployment for MUX HAL pipeline
entrypoint: flows/mux_flow.py:process_mux_data
parameters:
new_file_list: ["heathrow/parquet/CTX_MUXLOGS_PARQUET/20230101/20230101_K204.parquet"]
work_pool:
name: cloud-run-work-pool
work_queue_name: default
job_variables:
image: '{{ build_image.image }}'
env:
DB_USER: 'dev_user'
DB_PASSWORD: 'dev_password'
DB_HOST: 'dev_host'
DB_PORT: '5432'
DB_NAME: 'dev_db'
DATABASE_URL: 'postgresql://{{ env('DB_USER') }}:{{ env('DB_PASSWORD') }}@{{ env('DB_HOST') }}:{{ env('DB_PORT') }}/{{ env('DB_NAME') }}'
schedules: []
#### prefect_prod.yaml
yaml
- name: xrs-hal-pipeline-deploy-prod
tags: ["production"]
description: Production deployment for XRS HAL pipeline
entrypoint: flows/xrs_flow.py:process_xrs_data
parameters:
new_file_list: ["heathrow/parquet/CTX_JSON_PARQUET/XRS/2023-01-01_K204_JSON_XRS.parquet"]
work_pool:
name: cloud-run-work-pool
work_queue_name: default
job_variables:
image: '{{ build_image.image }}'
env:
DB_USER: 'prod_user'
DB_PASSWORD: 'prod_password'
DB_HOST: 'prod_host'
DB_PORT: '5432'
DB_NAME: 'prod_db'
DATABASE_URL: 'postgresql://{{ env('DB_USER') }}:{{ env('DB_PASSWORD') }}@{{ env('DB_HOST') }}:{{ env('DB_PORT') }}/{{ env('DB_NAME') }}'
schedules: []
- name: mux-hal-pipeline-deploy-prod
tags: ["production"]
description: Production deployment for MUX HAL pipeline
entrypoint: flows/mux_flow.py:process_mux_data
parameters:
new_file_list: ["heathrow/parquet/CTX_MUXLOGS_PARQUET/20230101/20230101_K204.parquet"]
work_pool:
name: cloud-run-work-pool
work_queue_name: default
job_variables:
image: '{{ build_image.image }}'
env:
DB_USER: 'prod_user'
DB_PASSWORD: 'prod_password'
DB_HOST: 'prod_host'
DB_PORT: '5432'
DB_NAME: 'prod_db'
DATABASE_URL: 'postgresql://{{ env('DB_USER') }}:{{ env('DB_PASSWORD') }}@{{ env('DB_HOST') }}:{{ env('DB_PORT') }}/{{ env('DB_NAME') }}'
schedules: []
### Advantages of Separate Files
1. Clarity: It's clear which file and configuration is for which environment.
2. Safety: Reduces the risk of deploying development settings to production.
3. Simplicity: Easier to manage and update configurations for each environment separately.Marvin
06/20/2024, 2:05 PMDaniel
06/20/2024, 2:11 PMMarvin
06/20/2024, 2:11 PMprefect deployment apply
command in Prefect is used to create a deployment from a deployment YAML file. This command registers the deployment with the Prefect API, making it available for execution and visible in the Prefect UI.
### Purpose of prefect deployment apply
- Registers the Deployment: It takes the configuration defined in your prefect.yaml
(or any other YAML file containing deployment specifications) and creates the deployment on the Prefect API.
- Visibility in UI: Once applied, the deployment is visible in the Prefect UI where it can be managed, triggered, or inspected.
- Optional File Upload: The command can optionally upload deployment files to remote storage if specified.
### Syntax
bash
prefect deployment apply <path-to-yaml-file>
### Example
bash
prefect deployment apply ./deployments/prefect_prod.yaml
This command reads the prefect_prod.yaml
file and registers the specified deployments as managed entities within the Prefect orchestration environment.
### More Details
- Build and Apply:
- Before applying, you may need to run prefect deployment build
to generate your deployment YAML file.
- Example:
bash
prefect deployment build -n my-deployment -q test-queue flows/my_flow.py:my_func -o deployments/prefect_prod.yaml
- Then apply the generated deployment file:
bash
prefect deployment apply deployments/prefect_prod.yaml
### Documentation Links
- Prefect Deployment Concepts
- Running Deployment Apply Command
This allows your Prefect server or Cloud to recognize the deployment, enabling you to schedule and trigger the flow runs as configured.Daniel
06/20/2024, 4:17 PMMarvin
06/20/2024, 4:18 PMdockerfile
# Use a base image
FROM python:3.10
# Set environment variables
ENV DB_USER='your_db_user'
ENV DB_PASSWORD='your_db_password'
ENV DB_HOST='your_db_host'
ENV DB_PORT='5432'
ENV DB_NAME='your_db_name'
# Optional: You can also set DATABASE_URL using other environment variables
ENV DATABASE_URL="postgresql://${DB_USER}:${DB_PASSWORD}@${DB_HOST}:${DB_PORT}/${DB_NAME}"
# Copy your requirements.txt and install any dependencies
COPY ./requirements.txt /requirements.txt
RUN pip install -r /requirements.txt
# Copy the rest of your application code
COPY . /app
# Set the working directory
WORKDIR /app
# Command to run your application
CMD ["python", "your_flow_script.py"]
### Prefect YAML Configuration
With the environment variables set in the Dockerfile, you can simplify the Prefect deployment YAML files since the necessary environment variables are already baked into the Docker image.
#### prefect_dev.yaml
yaml
- name: xrs-hal-pipeline-deploy-dev
tags: ["development"]
description: Development deployment for XRS HAL pipeline
entrypoint: flows/xrs_flow.py:process_xrs_data
parameters:
new_file_list: ["heathrow/parquet/CTX_JSON_PARQUET/XRS/2023-01-01_K204_JSON_XRS.parquet"]
work_pool:
name: cloud-run-work-pool
work_queue_name: default
job_variables:
image: 'your-docker-repo/your-image:dev'
schedules: []
- name: mux-hal-pipeline-deploy-dev
tags: ["development"]
description: Development deployment for MUX HAL pipeline
entrypoint: flows/mux_flow.py:process_mux_data
parameters:
new_file_list: ["heathrow/parquet/CTX_MUXLOGS_PARQUET/20230101/20230101_K204.parquet"]
work_pool:
name: cloud-run-work-pool
work_queue_name: default
job_variables:
image: 'your-docker-repo/your-image:dev'
schedules: []
#### prefect_prod.yaml
yaml
- name: xrs-hal-pipeline-deploy-prod
tags: ["production"]
description: Production deployment for XRS HAL pipeline
entrypoint: flows/xrs_flow.py:process_xrs_data
parameters:
new_file_list: ["heathrow/parquet/CTX_JSON_PARQUET/XRS/2023-01-01_K204_JSON_XRS.parquet"]
work_pool:
name: cloud-run-work-pool
work_queue_name: default
job_variables:
image: 'your-docker-repo/your-image:prod'
schedules: []
- name: mux-hal-pipeline-deploy-prod
tags: ["production"]
description: Production deployment for MUX HAL pipeline
entrypoint: flows/mux_flow.py:process_mux_data
parameters:
new_file_list: ["heathrow/parquet/CTX_MUXLOGS_PARQUET/20230101/20230101_K204.parquet"]
work_pool:
name: cloud-run-work-pool
work_queue_name: default
job_variables:
image: 'your-docker-repo/your-image:prod'
schedules: []
### Deployment Commands
- Development Deployment:
sh
prefect deployment apply prefect/deployments/prefect_dev.yaml
- Production Deployment:
sh
prefect deployment apply prefect/deployments/prefect_prod.yaml
### Summary
- Environment Variables in Dockerfile: By setting environment variables in the Dockerfile, you streamline deployment configuration.
- Simplified YAML: The Prefect YAML configurations are cleaner, focusing solely on deployment-specific parameters.
- Deployment: Use the prefect deployment apply
command to register the deployments.
This approach simplifies managing environment variables and ensures consistency across different environments.Daniel
06/21/2024, 7:47 AMprefect deploy --all
in the directory of both prefect_dev.yaml and prefect_prod.yaml will it deploy all the deployments from both of the yamls?Marvin
06/21/2024, 7:47 AMprefect deploy --all
in a directory where both prefect_dev.yaml
and prefect_prod.yaml
are present will deploy all the deployments specified within those files.
### Clarification on prefect deploy --all
The prefect deploy --all
command scans the current directory for all deployments defined in YAML files and deploys them. It does not require you to specify individual files, making it convenient for deploying multiple configurations at once.
### Example Directory Structure
Ensure your directory structure is organized as follows:
plaintext
prefect/
│
├── deployments/
│ ├── prefect_dev.yaml
│ └── prefect_prod.yaml
### Example Deployment Command
Navigate to the deployments
directory and run:
sh
cd prefect/deployments
prefect deploy --all
### What Happens
- The command will search the directory for all .yaml
files.
- It will read prefect_dev.yaml
and prefect_prod.yaml
.
- All deployments defined in these files will be registered with the Prefect server.
### Example Deployments in YAML Files
#### prefect_dev.yaml
yaml
- name: xrs-hal-pipeline-deploy-dev
tags: ["development"]
description: Development deployment for XRS HAL pipeline
entrypoint: flows/xrs_flow.py:process_xrs_data
parameters:
new_file_list: ["heathrow/parquet/CTX_JSON_PARQUET/XRS/2023-01-01_K204_JSON_XRS.parquet"]
work_pool:
name: cloud-run-work-pool
work_queue_name: default
job_variables:
image: 'your-docker-repo/your-image:dev'
schedules: []
- name: mux-hal-pipeline-deploy-dev
tags: ["development"]
description: Development deployment for MUX HAL pipeline
entrypoint: flows/mux_flow.py:process_mux_data
parameters:
new_file_list: ["heathrow/parquet/CTX_MUXLOGS_PARQUET/20230101/20230101_K204.parquet"]
work_pool:
name: cloud-run-work-pool
work_queue_name: default
job_variables:
image: 'your-docker-repo/your-image:dev'
schedules: []
#### prefect_prod.yaml
yaml
- name: xrs-hal-pipeline-deploy-prod
tags: ["production"]
description: Production deployment for XRS HAL pipeline
entrypoint: flows/xrs_flow.py:process_xrs_data
parameters:
new_file_list: ["heathrow/parquet/CTX_JSON_PARQUET/XRS/2023-01-01_K204_JSON_XRS.parquet"]
work_pool:
name: cloud-run-work-pool
work_queue_name: default
job_variables:
image: 'your-docker-repo/your-image:prod'
schedules: []
- name: mux-hal-pipeline-deploy-prod
tags: ["production"]
description: Production deployment for MUX HAL pipeline
entrypoint: flows/mux_flow.py:process_mux_data
parameters:
new_file_list: ["heathrow/parquet/CTX_MUXLOGS_PARQUET/20230101/20230101_K204.parquet"]
work_pool:
name: cloud-run-work-pool
work_queue_name: default
job_variables:
image: 'your-docker-repo/your-image:prod'
schedules: []
### Documentation Links
For more detailed information:
- Prefect Deployment Documentation
- Prefect Deploy Guide
This setup will ensure that both your development and production deployments are registered and ready to be run.Daniel
06/21/2024, 8:28 AMMarvin
06/21/2024, 8:28 AMprefect deploy --all
looks for a config file named prefect.yaml
in the current directory. To specify a different config file, you need to use the --prefect-file
flag followed by the path to your YAML file.
### Steps to Deploy All Flows in prefect_dev.yaml
1. Navigate to the Directory: Ensure you are in the directory containing your deployment YAML file.
sh
cd path/to/your/deployments
2. Run the Deployment Command: Use the --prefect-file
flag to specify the YAML file.
sh
prefect deploy --prefect-file prefect_dev.yaml --all
### Example Directory Structure
To clarify, if your directory structure looks like this:
plaintext
prefect/
│
├── deployments/
│ ├── prefect_dev.yaml
│ └── prefect_prod.yaml
Run the command from within the deployments
directory:
sh
cd prefect/deployments
prefect deploy --prefect-file prefect_dev.yaml --all
### Explanation
- --prefect-file
flag: This flag allows you to specify an alternative to the default prefect.yaml
file.
- --all
flag: This will deploy all deployments defined in the specified YAML file.
### Documentation Links
For more details, you can refer to the official documentation:
- Prefect Deploy Guide
By following these steps, you should be able to deploy all flows defined in your prefect_dev.yaml
file without encountering the error related to prefect.yaml
.