Dijar Vrella
06/17/2024, 9:56 PMMarvin
06/17/2024, 9:56 PMnginx:latest
image and then runs it as a container. Unfortunately, putting create_flow_to_pull_docker_image
and run_container_in_flow
keywords didn't directly lead us to the exact documents for container setup, but combining information from multiple documents, you can achieve your goal.
Below is an example deployment script for Prefect, including pulling and running the nginx:latest
image:
yaml
flows:
- name: pull-and-run-nginx
storage:
type: docker
build: false # Indicating that we are not building a new Docker image.
push: false # Indicating that we are not pushing the image to a repository.
image_registry:
base_image: nginx:latest
entrypoint: flow.py
infrastructure:
type: docker-container
image: nginx:latest
command:
- "nginx"
- "-g"
- "daemon off;"
work_queues:
- name: default
You would also need a flow.py
file to define the Prefect flow:
python
from prefect import flow
@flow
def pull_and_run_nginx():
# In a real-world scenario you would perform more logic here
print("Pulling and running nginx:latest container")
if __name__ == "__main__":
pull_and_run_nginx()
To deploy the flow, you would use Prefect's deployment commands:
sh
prefect deployment build -n pull-and-run-nginx -q default -f pull_and_run_nginx.py
prefect deployment apply pull-and-run-nginx-deployment.yaml
This is a basic definition. In a real workflow, you might consider pulling the image dynamically inside the flow using Docker Python SDK or Prefect task as shown more explicitly by the guides.
### Useful Links
- Prefect Docker Worker Documentation
- Example Prefect Docker Guide
Feel free to ask if you have more specific requirements or need further assistance.Dijar Vrella
06/17/2024, 10:00 PMMarvin
06/17/2024, 10:00 PM-f
option is not correct here. Here's a refined approach for creating the deployment using the prefect.yaml
file.
First, create a prefect.yaml
configuration file:
yaml
version: 2.0
build: {}
pull: {}
deployments:
- name: pull-and-run-nginx
version: 1.0
entrypoint: flow.py:pull_and_run_nginx
work_queue_name: default
description: A flow to pull and run nginx:latest Docker container
storage: {}
infrastructure:
type: docker-container
image: nginx:latest
command:
- "nginx"
- "-g"
- "daemon off;"
Then, let's update the flow.py
as follows:
python
from prefect import flow
@flow
def pull_and_run_nginx():
print("Pulling and running nginx:latest container")
if __name__ == "__main__":
pull_and_run_nginx()
Finally, deploy your flow using the prefect deploy
command:
sh
prefect deploy --prefect-file path/to/prefect.yaml
Make sure your project directory is set up correctly and that you're running these commands from within your project's root.
### Sources
- Prefect Deploy Guide
- Prefect Docker Deployment Guide
This should get you started on deploying your Docker container with Prefect. If you run into any issues, let me know!Dijar Vrella
06/17/2024, 10:04 PMMarvin
06/17/2024, 10:04 PM220306.820 | INFO | prefect.flow_runs.worker - Worker 'DockerWorker c3703705-a21f-4a5f-b9ec-e6f4134f3b54' submitting flow run '2d37af56-532e-4a91-a1d1-527b083efbac'220306.909 | INFO | prefect.worker.docker.dockerworker c3703705-a21f-4a5f-b9ec-e6f4134f3b54 - Creating Docker container 'mature-iguana'... 220306.966 | INFO | prefect.worker.docker.dockerworker c3703705-a21f-4a5f-b9ec-e6f4134f3b54 - Docker container 'mature-iguana' has status 'created' 220307.131 | INFO | prefect.worker.docker.dockerworker c3703705-a21f-4a5f-b9ec-e6f4134f3b54 - Docker container 'mature-iguana' has status 'running' 220307.147 | INFO | prefect.flow_runs.worker - Completed submission of flow run '2d37af56-532e-4a91-a1d1-527b083efbac' 220309.347 | INFO | prefect.flow_runs.runner
Marvin
06/17/2024, 10:04 PM220311.122 | ERROR | Flow run 'mature-iguana' - Flow could not be retrieved from deployment.Traceback (most recent call last): File "/usr/local/lib/python3.10/site-packages/prefect/deployments/steps/core.py", line 154, in run_steps step_output = await run_step(step, upstream_outputs) File "/usr/local/lib/python3.10/site-packages/prefect/deployments/steps/core.py", line 125, in run_step result = await from_async.call_soon_in_new_thread( File "/usr/local/lib/python3.10/site-packages/prefect/_internal/concurrency/calls.py", line 327, in aresult return await asyncio.wrap_future(self.future) File "/usr/local/lib/python3.10/site-packages/prefect/_internal/concurrency/calls.py", line 352, in _run_sync result = self.fn(*self.args, **self.kwargs) File "/usr/local/lib/python3.10/site-packages/prefect/deployments/steps/pull.py", line 28, in set_working_directory os.chdir(directory) FileNotFoundError: [Errno 2] No such file or directory: '/home/proj/dijar-kickoff/prefect/marvin' The above exception was the direct cause of the following exception:
Marvin
06/17/2024, 10:05 PMFileNotFoundError
typically means that the specified directory does not exist, so double-check the paths used in your prefect.yaml
file and any other relevant configuration.
2. Directory Setup in `prefect.yaml`: Make sure the entrypoint
and other path configurations in your prefect.yaml
are correctly set. You may need to specify the relative or full path as required.
yaml
version: 2.0
build: {}
pull: {}
deployments:
- name: pull-and-run-nginx
version: 1.0
entrypoint: "./flow.py:pull_and_run_nginx"
work_queue_name: default
description: A flow to pull and run nginx:latest Docker container
storage: {}
infrastructure:
type: docker-container
image: nginx:latest
command:
- "nginx"
- "-g"
- "daemon off;"
3. Resolve Local Directory Issues: If you are using local file systems, ensure that the directory exists on both your local machine (where you create the deployment) and in the execution environment (e.g., Docker, Kubernetes). Sometimes you might want to create the directories manually before running the flow.
4. Inspect Storage Block Configuration: If you are using Prefect Storage Blocks, ensure they are correctly set up and referenced in your deployment file.
### Example Workflow
Here is a step-by-step guide to set up and troubleshoot the deployment:
1. Ensure Directory Structure:
Make sure the directory containing flow.py
exists and is correctly referenced in the project configuration.
sh
.
├── flow.py
└── prefect.yaml
2. Correct Configuration in `flow.py`:
python
from prefect import flow
@flow
def pull_and_run_nginx():
print("Pulling and running nginx:latest container")
if __name__ == "__main__":
pull_and_run_nginx()
3. Deploy Correctly:
Ensure your deployment command uses the correct configuration:
sh
prefect deploy --prefect-file ./prefect.yaml
### Useful Links
- Prefect Deploy Guide
- Prefect Docker Deployment Guide
- GitHub Issue: Flow could not be retrieved from deployment - FileNotFoundError
This should help resolve the FileNotFoundError
and ensure your deployment runs successfully. If you continue to experience issues, please share more details about the structure and configuration so that we can further assist you.Dijar Vrella
06/17/2024, 10:22 PMMarvin
06/17/2024, 10:22 PMflow.py
file as a volume in the Docker container is an effective way to ensure that the file is accessible within the container's working directory. This approach allows the Docker container to use the local file system's flow code directly.
### Step-by-Step Guide
1. Update Docker Run Command to Mount Volume:
Use the -v
(volume) option to mount your local directory (where flow.py
resides) to a directory inside the container (e.g., /opt/prefect
).
sh
docker run -d --name prefect -v /path/to/local/dir:/opt/prefect -e PREFECT_API_URL=<http://host.docker.internal:4200/api> --workdir /opt/prefect your-prefect-image
Replace /path/to/local/dir
with the actual path to your local directory containing flow.py
.
2. Ensure Consistency in Paths:
Make sure that the paths in your prefect.yaml
and flow.py
configuration match the mounted directory inside the Docker container. Specifically, if the container expects the working directory to be /opt/prefect
, ensure your entrypoint
in the prefect.yaml
uses this path.
3. Example prefect.yaml:
yaml
version: 2.0
build: {}
pull: {}
deployments:
- name: pull-and-run-nginx
version: 1.0
entrypoint: "/opt/prefect/flow.py:pull_and_run_nginx"
work_queue_name: default
description: A flow to pull and run nginx:latest Docker container
storage: {}
infrastructure:
type: docker-container
image: nginx:latest
command:
- "nginx"
- "-g"
- "daemon off;"
4. Ensure flow.py
Path Consistency:
Make sure your flow.py
script is structured correctly and is located in the mounted directory:
python
from prefect import flow
@flow
def pull_and_run_nginx():
print("Pulling and running nginx:latest container")
if __name__ == "__main__":
pull_and_run_nginx()
5. Deploy the Prefect Flow:
With everything set up, run the deployment command from within the project directory:
sh
prefect deploy --prefect-file ./prefect.yaml
### Example Docker Run Command
Here's a complete example docker run
command that includes mounting the volume and setting environment variables:
sh
docker run -d --name prefect -v /path/to/your/local/project:/opt/prefect -e PREFECT_API_URL=<http://host.docker.internal:4200/api> --workdir /opt/prefect prefecthq/prefect:latest
### Links
- Docker Volumes Documentation
- Prefect Deploy Guide
- Prefect Docker Guide
Mounting the volume ensures that any changes in your local flow.py
file are reflected inside the Docker container, making it easy to manage and test your Prefect flows. If you follow these steps and still encounter issues, please share the exact error message for further troubleshooting.Dijar Vrella
06/17/2024, 10:34 PMpull_docker_image
and then use create_docker_container
to create the container?Marvin
06/17/2024, 10:34 PMpull_docker_image
and create_docker_container
functions from the Prefect Docker collections to create a workflow that pulls the nginx image and runs it as a container.
### Step-by-Step Workflow
1. Flow Definition:
First, define a Prefect flow that includes steps to pull the Docker image and create the Docker container.
2. Add Required Imports:
Use the appropriate Prefect and Docker integration functions.
Here’s an example configuration:
### flow.py
python
from prefect import flow
from prefect_docker.images import pull_docker_image
from prefect_docker.containers import create_docker_container
@flow
async def pull_and_run_nginx():
# Pull the latest nginx image
image = await pull_docker_image(repository="nginx", tag="latest")
print(f"Pulled image: {image}")
# Create and run a container from the pulled image
container = await create_docker_container(
image="nginx:latest",
command=["nginx", "-g", "daemon off;"]
)
print(f"Created container: {container}")
if __name__ == "__main__":
pull_and_run_nginx()
### Deployment Configuration (prefect.yaml
)
Create a prefect.yaml
file to define the deployment details:
yaml
version: 2.0
build: {}
pull: {}
deployments:
- name: pull-and-run-nginx
version: 1.0
entrypoint: "flow.py:pull_and_run_nginx"
work_queue_name: default
description: A flow to pull and run nginx:latest Docker container
storage: {}
infrastructure:
type: docker-container
image: prefecthq/prefect:latest
command:
- "python"
- "/opt/prefect/flow.py"
### Running the Deployment
1. Deploy the Flow:
If you haven’t already, ensure your local directory structure matches what is expected in the configuration. In this example, the Python file is flow.py
in the root directory.
Then, run the following command to deploy:
sh
prefect deploy --prefect-file ./prefect.yaml
2. Run the Docker Container:
Ensure you correctly mount the project directory containing flow.py
to the appropriate path inside the container:
sh
docker run -d --name prefect -v /path/to/your/local/project:/opt/prefect -e PREFECT_API_URL=<http://host.docker.internal:4200/api> --workdir /opt/prefect prefecthq/prefect:latest
### Summary
- Define the flow in flow.py
leveraging Prefect’s Docker functionalities.
- Configure the deployment in prefect.yaml
.
- Deploy the flow using Prefect CLI.
- Execute the container with proper volume mounting.
By using Prefect's integrated tasks for Docker operations, you can streamline the workflow configuration and execution. If you encounter any specific issues, feel free to ask for more detailed troubleshooting!Dijar Vrella
06/17/2024, 10:38 PMMarvin
06/17/2024, 10:38 PMinfrastructure
section as long as the image contains all the dependencies needed to run your Prefect flow. For instance, if your flow requires certain Python libraries or Prefect itself, those need to be included in the custom image.
### Question 2: Using Prefect Image or Custom Image?
Using the prefecthq/prefect:latest
is often convenient since it comes pre-configured with Prefect and common dependencies. However, you can definitely use any custom Docker image, just ensure it has Prefect and any other required libraries installed.
### Custom Image Example
Here’s a refined prefect.yaml
if you choose to use a custom image:
yaml
version: 2.0
build: {}
pull: {}
deployments:
- name: pull-and-run-nginx
version: 1.0
entrypoint: "flow.py:pull_and_run_nginx"
work_queue_name: default
description: A flow to pull and run nginx:latest Docker container
storage: {}
infrastructure:
type: docker-container
image: custom-image:latest # Use your custom image
command:
- "python"
- "/opt/prefect/flow.py"
Just make sure custom-image:latest
has Prefect installed:
dockerfile
FROM python:3.10-slim
WORKDIR /opt/prefect
# Install Prefect
RUN pip install prefect
# Copy your flow code into the image
COPY flow.py .
CMD ["python", "/opt/prefect/flow.py"]
### Question 3: RuntimeWarning for Untouched Coroutine
The RuntimeWarning you are seeing is due to attempting to run an async function incorrectly. When using async functions outside an async context, you need to use an event loop.
Here’s how you can adjust flow.py
for proper async handling:
python
import asyncio
from prefect import flow
from prefect_docker.images import pull_docker_image
from prefect_docker.containers import create_docker_container
@flow
async def pull_and_run_nginx():
# Pull the latest nginx image
image = await pull_docker_image(repository="nginx", tag="latest")
print(f"Pulled image: {image}")
# Create and run a container from the pulled image
container = await create_docker_container(
image="nginx:latest",
command=["nginx", "-g", "daemon off;"]
)
print(f"Created container: {container}")
if __name__ == "__main__":
asyncio.run(pull_and_run_nginx())
### Execution Summary
1. Ensure Docker Image: Either use a Prefect image or create your custom image with all dependencies.
2. Modify `flow.py`: Correctly handle async flow functions.
3. Run Docker Container: Make sure to properly mount the local directory.
### Useful Links
- Prefect Docker Integration
- Dockerfile Reference
This ensures that the async routines are handled correctly, and the appropriate libraries are available in your Docker runtime environment. Let me know if you need further assistance!Dijar Vrella
06/17/2024, 10:51 PMMarvin
06/17/2024, 10:51 PMSo the workflow completes now but I don't see the container running:/opt/prefect# python flow.py 224127.956 | INFO | prefect.engine - Created flow run 'super-seagull' for flow 'pull-and-run-nginx' 224127.957 | INFO | Flow run 'super-seagull' - View at http://localhost:4200/flow-runs/flow-run/686fdf95-19e4-41c6-8dea-12f5b3851854 224128.045 | INFO | Flow run 'super-seagull' - Created task run 'pull_docker_image-0' for task 'pull_docker_image' 224128.046 | INFO | Flow run 'super-seagull' - Executing 'pull_docker_image-0' immediately... 224128.121 | INFO | Task run 'pull_docker_image-0' - Pulling image: nginx:latest. 224128.393 | INFO | Task run 'pull_docker_image-0' - Finished in state Completed() Pulled image: <Image: 'nginx:latest'> 224128.425 | INFO | Flow run 'super-seagull' - Created task run 'create_docker_container-0' for task 'create_docker_container
Marvin
06/17/2024, 10:52 PMSo the workflow completes now but I don't see the container running:224128.045 | INFO | Flow run 'super-seagull' - Created task run 'pull_docker_image-0' for task 'pull_docker_image' 224128.046 | INFO | Flow run 'super-seagull' - Executing 'pull_docker_image-0' immediately... 224128.121 | INFO | Task run 'pull_docker_image-0' - Pulling image: nginx:latest. 224128.393 | INFO | Task run 'pull_docker_image-0' - Finished in state Completed() Pulled image: <Image: 'nginx:latest'> 224128.425 | INFO | Flow run 'super-seagull' - Created task run 'create_docker_container-0' for task 'create_docker_container' 224128.426 | INFO | Flow run 'super-seagull' - Executing 'create_docker_container-0' immediately... 224128.480 | INFO | Task run 'create_docker_container-0' - Creating container with 'nginx:latest' image. 224128.560 | INFO | Task run 'create_docker_container-0' - Finished in state Completed() Created container: <Container: cbe5bff07cea> 22
Marvin
06/17/2024, 10:52 PMSo the workflow completes now but I don't see the container running:224128.045 | INFO | Flow run 'super-seagull' - Created task run 'pull_docker_image-0' for task 'pull_docker_image' 224128.046 | INFO | Flow run 'super-seagull' - Executing 'pull_docker_image-0' immediately... 224128.121 | INFO | Task run 'pull_docker_image-0' - Pulling image: nginx:latest. 224128.393 | INFO | Task run 'pull_docker_image-0' - Finished in state Completed() Pulled image: <Image: 'nginx:latest'> 224128.425 | INFO | Flow run 'super-seagull' - Created task run 'create_docker_container-0' for task 'create_docker_container' 224128.426 | INFO | Flow run 'super-seagull' - Executing 'create_docker_container-0' immediately... 224128.480 | INFO | Task run 'create_docker_container-0' - Creating container with 'nginx:latest' image. 224128.560 | INFO | Task run 'create_docker_container-0' - Finished in state Completed() Created container: <Container: cbe5bff07cea> 22
Marvin
06/17/2024, 10:53 PMcreate_docker_container
function only creates the container without starting it. To start the container, you need to add an additional step to run the container after it's created.
### Update with Start Container
You can use the start_docker_container
task from Prefect to start the container after it's created.
Here's an updated version of your `flow.py`:
python
import asyncio
from prefect import flow
from prefect_docker.images import pull_docker_image
from prefect_docker.containers import create_docker_container, start_docker_container
@flow
async def pull_and_run_nginx():
# Pull the latest nginx image
image = await pull_docker_image(repository="nginx", tag="latest")
print(f"Pulled image: {image}")
# Create a container from the pulled image
container = await create_docker_container(
image="nginx:latest",
command=["nginx", "-g", "daemon off;"]
)
print(f"Created container: {container}")
# Start the container
started_container = await start_docker_container(container_id=container.id)
print(f"Started container: {started_container}")
if __name__ == "__main__":
asyncio.run(pull_and_run_nginx())
### Ensure All Prefect Docker Task Installations
Make sure you have all necessary Prefect Docker tasks installed:
sh
pip install prefect-docker
### Final Steps
1. Update the Flow Code: Ensure the flow.py
script includes the start_docker_container
task as shown above.
2. Deploy Again:
After updating the flow.py
, redeploy your flow with the correct configurations.
sh
prefect deploy --prefect-file ./prefect.yaml
3. Run the Docker Container:
Make sure to run the Docker container with the updated flow script mounted, as explained earlier:
sh
docker run -d --name prefect -v /path/to/your/local/project:/opt/prefect -e PREFECT_API_URL=<http://host.docker.internal:4200/api> --workdir /opt/prefect prefecthq/prefect:latest
### Additional Step for Verification
To ensure that the container is indeed running, you might want to list running containers or inspect logs:
sh
docker ps -a # This will list all containers, including stopped ones.
and for logs:
sh
docker logs <container_id>
This approach ensures the workflow not only creates but also starts the container. If you have any more issues or questions, feel free to ask!Dijar Vrella
06/17/2024, 10:55 PMMarvin
06/17/2024, 10:56 PMpython
from prefect_docker.credentials import DockerRegistryCredentials
docker_registry_credentials = DockerRegistryCredentials(
username="your_username",
password="your_password", # It's better to use a secure method to store passwords, e.g., Prefect Secret
registry_url="your_registry_url"
)
docker_registry_credentials.save(name="my-docker-registry")
2. Use Docker Registry Credentials in Your Flow
You can then use these saved credentials to pull images securely.
### flow.py
Update your flow.py
to use `DockerRegistryCredentials`:
python
import asyncio
from prefect import flow
from prefect_docker.images import pull_docker_image
from prefect_docker.containers import create_docker_container, start_docker_container
from prefect_docker.credentials import DockerRegistryCredentials
@flow
async def pull_and_run_nginx():
# Load Docker credentials
docker_registry_credentials = await DockerRegistryCredentials.load("my-docker-registry")
# Pull the latest nginx image from the private repository
image = await pull_docker_image(
repository="your_private_repo/nginx",
tag="latest",
docker_registry_credentials=docker_registry_credentials
)
print(f"Pulled image: {image}")
# Create and run a container from the pulled image
container = await create_docker_container(
image="your_private_repo/nginx:latest",
command=["nginx", "-g", "daemon off;"]
)
print(f"Created container: {container}")
# Start the container
started_container = await start_docker_container(container_id=container.id)
print(f"Started container: {started_container}")
if __name__ == "__main__":
asyncio.run(pull_and_run_nginx())
### Update Deployment Configuration (prefect.yaml
)
Ensure your deployment YAML remains correct:
yaml
version: 2.0
build: {}
pull: {}
deployments:
- name: pull-and-run-nginx
version: 1.0
entrypoint: "flow.py:pull_and_run_nginx"
work_queue_name: default
description: A flow to pull and run nginx:latest Docker container
storage: {}
infrastructure:
type: docker-container
image: custom-image:latest
command:
- "python"
- "/opt/prefect/flow.py"
### Secure Credential Storage
It's good practice to store sensitive information securely. Prefect's Secret
for secure storage can be used or environment variables:
python
import os
from prefect_docker.credentials import DockerRegistryCredentials
from prefect.blocks.system import Secret
# Using Prefect Secret to store the password securely
docker_registry_password = Secret.load("docker_registry_password")
docker_registry_credentials = DockerRegistryCredentials(
username="your_username",
password=docker_registry_password.get(), # Getting the password from Prefect Secret
registry_url="your_registry_url"
)
docker_registry_credentials.save(name="my-docker-registry")
### Deployment and Execution
Deploy the updated flow:
sh
prefect deploy --prefect-file ./prefect.yaml
Run the Docker container as previously configured:
sh
docker run -d --name prefect -v /path/to/your/local/project:/opt/prefect -e PREFECT_API_URL=<http://host.docker.internal:4200/api> --workdir /opt/prefect custom-image:latest
### Documentation Links
- Prefect Docker Image Pull
- Prefect Docker Container ManagementMarvin
06/17/2024, 10:56 PMDijar Vrella
06/17/2024, 11:09 PMMarvin
06/17/2024, 11:09 PMDockerRegistryCredentials
block is correctly configured with the necessary credentials:
python
from prefect_docker.credentials import DockerRegistryCredentials
from prefect.blocks.system import Secret
# Using Prefect Secret to store the password securely
docker_registry_password = Secret.load("docker_registry_password")
docker_registry_credentials = DockerRegistryCredentials(
username="your_username",
password=docker_registry_password.get(), # Getting the password from Prefect Secret
registry_url="your.registry.url"
)
docker_registry_credentials.save(name="my-docker-registry")
### Verify Registry URL
The registry_url
should match the one you use when running docker login
. For Docker Hub, it would be <http://index.docker.io|index.docker.io>
. Here’s an example for Docker Hub:
python
docker_registry_credentials = DockerRegistryCredentials(
username="your_username",
password=docker_registry_password.get(),
registry_url="<http://index.docker.io|index.docker.io>" # For Docker Hub
)
docker_registry_credentials.save(name="my-docker-registry")
### Use Registry Credentials in Flow
Ensure your flow.py
correctly uses the stored credentials:
python
import asyncio
from prefect import flow
from prefect_docker.images import pull_docker_image
from prefect_docker.containers import create_docker_container, start_docker_container
from prefect_docker.credentials import DockerRegistryCredentials
@flow
async def pull_and_run_nginx():
# Load Docker credentials
docker_registry_credentials = await DockerRegistryCredentials.load("my-docker-registry")
# Pull the latest nginx image from the private repository
image = await pull_docker_image(
repository="your_private_repo/nginx",
tag="latest",
docker_registry_credentials=docker_registry_credentials
)
print(f"Pulled image: {image}")
# Create and run a container from the pulled image
container = await create_docker_container(
image="your_private_repo/nginx:latest",
command=["nginx", "-g", "daemon off;"]
)
print(f"Created container: {container}")
# Start the container
started_container = await start_docker_container(container_id=container.id)
print(f"Started container: {started_container}")
if __name__ == "__main__":
asyncio.run(pull_and_run_nginx())
### Deployment Configuration
Ensure prefect.yaml
is correctly pointing to your script:
yaml
version: 2.0
build: {}
pull: {}
deployments:
- name: pull-and-run-nginx
version: 1.0
entrypoint: "flow.py:pull_and_run_nginx"
work_queue_name: default
description: A flow to pull and run nginx:latest Docker container
storage: {}
infrastructure:
type: docker-container
image: custom-image:latest
command:
- "python"
- "/opt/prefect/flow.py"
### Check Docker Login
Finally, verify you can manually log in and pull the image using the same credentials. Run the following commands to ensure your credentials are correct:
sh
docker login your.registry.url
docker pull your_private_repo/nginx:latest
### Summary
- Ensure DockerRegistryCredentials
is correctly configured and saved.
- Ensure the registry_url
in DockerRegistryCredentials
matches the login URL.
- Use the credentials in your flow and make sure the flow can access them.
- Verify you can manually log in and pull the image.
### Documentation Links
- Prefect Docker Registry Credentials
- Docker Registry AuthenticationMarvin
06/17/2024, 11:09 PMDijar Vrella
06/17/2024, 11:19 PMdocker run --gpus all -v "$(pwd)/../test.py:/workspace/test.py" -v /ninjadata:/ninjadata --group-add ninja -it --cap-add SYSLOG ninja/build:latest python test.py
Marvin
06/17/2024, 11:19 PMcreate_docker_container
and start_docker_container
tasks. Here's how you can do that:
### Updated flow.py
Below is an updated version of your flow.py
script to include the specified input flags:
python
import asyncio
from prefect import flow
from prefect_docker.images import pull_docker_image
from prefect_docker.containers import create_docker_container, start_docker_container
from prefect_docker.credentials import DockerRegistryCredentials
@flow
async def pull_and_run_nginx():
# Load Docker credentials
docker_registry_credentials = await DockerRegistryCredentials.load("my-docker-registry")
# Pull the latest image from the private repository
image = await pull_docker_image(
repository="ninja/build",
tag="latest",
docker_registry_credentials=docker_registry_credentials
)
print(f"Pulled image: {image}")
# Create a container with the specified flags
container = await create_docker_container(
image="ninja/build:latest",
command=["python", "test.py"],
volumes=[
f"{pwd}/../test.py:/workspace/test.py",
"/ninjadata:/ninjadata"
],
device_requests=[
{
'Driver': 'nvidia',
'Count': -1,
'Capabilities': [['gpu']],
},
],
group_add=["ninja"],
detach=True,
tty=True,
stdin_open=True, # -it is a combination of -i (interactive) and -t (tty)
cap_add=["SYSLOG"]
)
print(f"Created container: {container}")
# Start the container
started_container = await start_docker_container(container_id=container.id)
print(f"Started container: {started_container}")
if __name__ == "__main__":
asyncio.run(pull_and_run_nginx())
### Key Changes
1. Volumes: Specify volumes to mount using the volumes
parameter.
2. Device Requests: Request GPU access with the device_requests
parameter.
3. Group: Add a group to the container with group_add
.
4. TTY: Enable TTY with tty=True
and interactive mode with stdin_open=True
.
5. Capabilities: Add SYSLOG capability with cap_add
.
### Test and Deploy
Deploy and run the Prefect flow:
sh
prefect deploy --prefect-file ./prefect.yaml
Run the Docker container as previously configured:
sh
docker run -d --name prefect -v /path/to/your/local/project:/opt/prefect -e PREFECT_API_URL=<http://host.docker.internal:4200/api> --workdir /opt/prefect custom-image:latest
### Verifying Setup
To ensure the container is running with the expected flags:
1. Check running containers:
sh
docker ps
2. Inspect the container:
sh
docker inspect <container_id>
3. Logs:
sh
docker logs <container_id>
### Documentation Links
- Docker Volume
- Docker Device Requests for GPU
- Docker Capabilities
By following these steps, you ensure that your container runs with the specified flags and configurations. If you encounter any issues, make sure to verify the paths and permissions for volumes and other parameters.Dijar Vrella
06/18/2024, 2:25 PM@flow
or should I use @task
?
Also on the last prefect.yaml
do I only need to specify the entrypoint or is the command also mandatory?Marvin
06/18/2024, 2:25 PMpull_and_run_nginx
process is your main orchestration, then using @flow
is appropriate. If you have smaller granular tasks (such as pulling the Docker image, creating the container, starting the container), those should be marked with @task
.
### Updated flow.py
using @task
Here's an updated version using both @task
and `@flow`:
python
import asyncio
from prefect import flow, task
from prefect_docker.images import pull_docker_image
from prefect_docker.containers import create_docker_container, start_docker_container
from prefect_docker.credentials import DockerRegistryCredentials
@task
async def pull_image(credentials):
# Pull the latest image from the private repository
return await pull_docker_image(
repository="ninja/build",
tag="latest",
docker_registry_credentials=credentials
)
@task
async def create_container():
import os
pwd = os.getcwd()
# Create a container with the specified flags
return await create_docker_container(
image="ninja/build:latest",
command=["python", "test.py"],
volumes=[
f"{pwd}/../test.py:/workspace/test.py",
"/ninjadata:/ninjadata"
],
device_requests=[
{
'Driver': 'nvidia',
'Count': -1,
'Capabilities': [['gpu']],
},
],
group_add=["ninja"],
detach=True,
tty=True,
stdin_open=True, # -it is a combination of -i (interactive) and -t (tty)
cap_add=["SYSLOG"]
)
@task
async def start_container(container_id):
# Start the container
return await start_docker_container(container_id=container_id)
@flow
async def pull_and_run_nginx():
# Load Docker credentials
docker_registry_credentials = await DockerRegistryCredentials.load("my-docker-registry")
# Pull the image
image = await pull_image(docker_registry_credentials)
print(f"Pulled image: {image}")
# Create the container
container = await create_container()
print(f"Created container: {container}")
# Start the container
started_container = await start_container(container.id)
print(f"Started container: {started_container}")
if __name__ == "__main__":
asyncio.run(pull_and_run_nginx())
### prefect.yaml
Configuration
2. Entrypoint and Command:
- entrypoint: Specifies the script to run and the function to call.
- command: Specifies the command to run within the Docker container. This is typically the command needed to run your script within the Prefect infrastructure.
### Example prefect.yaml
Here’s an example of the updated prefect.yaml
configuration:
yaml
version: 2.0
build: {}
pull: {}
deployments:
- name: pull-and-run-nginx
version: 1.0
entrypoint: "flow.py:pull_and_run_nginx" # This is the entrypoint for Prefect
work_queue_name: default
description: A flow to pull and run nginx:latest Docker container
storage: {}
infrastructure:
type: docker-container
image: custom-image:latest # Use your custom image
command: ["python", "/opt/prefect/flow.py"] # This is the command to run within the Docker container
### Execution Summary
1. Define Tasks and Flow:
- Use @task
for smaller units of work.
- Use @flow
for the main orchestration.
2. Update Deployment Configuration:
- Specify the entrypoint for Prefect.
- Use the command to run the script in the Docker container.
3. Deploy and Run:
- Deploy using prefect deploy
.Marvin
06/18/2024, 2:25 PMDijar Vrella
06/18/2024, 2:27 PMMarvin
06/18/2024, 2:27 PMprefect.yaml
file can be clarified by understanding their distinct roles in the context of Prefect deployments and Docker container executions.
### Roles of entrypoint
and command
1. Entrypoint (Prefect-Specific):
- Purpose: The entrypoint
specifies the path to the flow function within the specified script file. It's used by Prefect to know where to find the Python function to execute when running the flow.
- Example: flow.py:pull_and_run_nginx
indicates that Prefect should run the pull_and_run_nginx
function within the flow.py
module.
2. Command (Docker-Specific):
- Purpose: The command
specifies what command(s) to run within the Docker container when it starts. This command is required to execute the script or application that will trigger the flow.
- Example: ["python", "/opt/prefect/flow.py"]
tells Docker to execute the flow.py
script using the Python interpreter when the container starts.
### Why Both Are Needed
Entrypoint Alone Is Not Sufficient:
- The entrypoint
is specific to Prefect's internal understanding of your flow and orchestrates which function to run, but it doesn't dictate how the script will be executed in the context of a running Docker container.
- Prefect needs to know the specific function entrypoint, but Docker needs to know how to start the container and what command to run inside it.
Command Is Essential for Docker:
- Docker needs to know the command
to run inside the container to initiate the Python script where the Prefect flow resides. This ensures that the environment inside the container starts correctly, and the correct script is executed.
Without the command
, Docker would not know to execute your Python script (flow.py
), even if Prefect knows the entrypoint function within that script.
### Practical Example
Consider the combination of entrypoint
and command
in the `prefect.yaml`:
yaml
version: 2.0
build: {}
pull: {}
deployments:
- name: pull-and-run-nginx
version: 1.0
entrypoint: "flow.py:pull_and_run_nginx" # Prefect needs this to know which function to call
work_queue_name: default
description: A flow to pull and run nginx:latest Docker container
storage: {}
infrastructure:
type: docker-container
image: custom-image:latest
command: ["python", "/opt/prefect/flow.py"] # Docker needs this to know how to start the script
- entrypoint: "flow.py:pull_and_run_nginx"
tells Prefect to run the pull_and_run_nginx
function inside the flow.py
file.
- command: ["python", "/opt/prefect/flow.py"]
tells Docker to run the flow.py
file using Python.
### Conclusion
Both entrypoint
and command
are necessary because they serve different purposes:
- entrypoint
for Prefect's understanding of flow orchestration and locating the specific function to execute.
- command
for Docker's understanding of how to start and run the container environment, including initiating the Python script.
If you have any additional questions or need further clarification, feel free to ask!Dijar Vrella
06/21/2024, 1:29 PMMarvin
06/21/2024, 1:29 PMthis works but generated the following:Created task run 'pull_image-0' for task 'pull_image' 030745 PM prefect.flow_runs INFO Executing 'pull_image-0' immediately... 030745 PM prefect.flow_runs INFO Created task run 'pull_docker_image-0' for task 'pull_docker_image' 030745 PM pull_image-0 prefect.task_runs INFO Executing 'pull_docker_image-0' immediately... 030745 PM pull_image-0 prefect.task_runs INFO Pulling image: seedooinsights/build:11ba042. 030745 PM pull_docker_image-0 prefect.task_runs INFO Finished in state Completed() 030745 PM pull_docker_image-0 prefect.task_runs INFO Finished in state Completed() 030745 PM pull_image-0 prefect.task_runs INFO Created task run 'create_container-0' for task 'create_container' 030745 PM prefect.flow_runs INFO Executing 'create_container-0' immediately... 030745 PM prefect.flow_runs INFO Created task run 'create_docker_container-0' for task 'create_docker_container' 030746 PM create
Dijar Vrella
06/21/2024, 1:30 PMMarvin
06/21/2024, 1:30 PMflow.py
to include detailed logging for each task and ensure that stdout is captured and printed:
### Updated flow.py
with Logging
1. Import Logging:
- Import logging from Prefect.
- Initialize logging in each task and flow.
2. Use Logging in Tasks:
- Use the get_run_logger
method to log messages during each task's execution.
### Example Code
Here's an updated version of flow.py
that includes logging for each task:
python
import asyncio
import os
from prefect import flow, task, get_run_logger
from prefect_docker.images import pull_docker_image
from prefect_docker.containers import create_docker_container, start_docker_container
from prefect_docker.credentials import DockerRegistryCredentials
@task
async def pull_image(credentials):
logger = get_run_logger()
# Pull the latest image from the private repository
<http://logger.info|logger.info>("Pulling the latest image from the private repository...")
image = await pull_docker_image(
repository="ninja/build",
tag="latest",
docker_registry_credentials=credentials
)
<http://logger.info|logger.info>(f"Pulled image: {image}")
return image
@task
async def create_container():
logger = get_run_logger()
pwd = os.getcwd()
# Create a container with the specified flags
<http://logger.info|logger.info>("Creating a container with the specified flags...")
container = await create_docker_container(
image="ninja/build:latest",
command=["python", "test.py"],
volumes=[
f"{pwd}/../test.py:/workspace/test.py",
"/ninjadata:/ninjadata"
],
device_requests=[
{
'Driver': 'nvidia',
'Count': -1,
'Capabilities': [['gpu']],
},
],
group_add=["ninja"],
detach=True,
tty=True,
stdin_open=True, # -it is a combination of -i (interactive) and -t (tty)
cap_add=["SYSLOG"]
)
<http://logger.info|logger.info>(f"Created container: {container}")
return container
@task
async def start_container(container_id):
logger = get_run_logger()
# Start the container
<http://logger.info|logger.info>(f"Starting container with ID: {container_id}...")
started_container = await start_docker_container(container_id=container_id)
<http://logger.info|logger.info>(f"Started container: {started_container}")
return started_container
@flow
async def pull_and_run_nginx():
logger = get_run_logger()
<http://logger.info|logger.info>("Loading Docker credentials...")
# Load Docker credentials
docker_registry_credentials = await DockerRegistryCredentials.load("my-docker-registry")
# Pull the image
image = await pull_image(docker_registry_credentials)
<http://logger.info|logger.info>(f"Pulled image: {image}")
# Create the container
container = await create_container()
<http://logger.info|logger.info>(f"Created container: {container}")
# Start the container
started_container = await start_container(container.id)
<http://logger.info|logger.info>(f"Started container: {started_container}")
if __name__ == "__main__":
asyncio.run(pull_and_run_nginx())
### Logging Configuration
Make sure Prefect's logging level is set to capture the level of detail you want. You can configure this in the Prefect configuration file or environment variable:
yaml
# ~/.prefect/config.toml
[logging]
level = "INFO" # You can also set this to DEBUG for more detail
Alternatively, you can set the logging level via environment variables:
sh
export PREFECT_LOGGING_LEVEL=INFO
### Summary
- Add Logging: Use Prefect's logging utilities (get_run_logger
) in each task and flow to log messages.
- Ensure Logging Level: Make sure the logging level is set to capture INFO (or DEBUG) messages.Marvin
06/21/2024, 1:30 PMDijar Vrella
06/21/2024, 1:32 PMMarvin
06/21/2024, 1:32 PMtoml
# ~/.prefect/config.toml
[logging]
level = "INFO" # You can also set this to DEBUG for more detail
[server]
api_url = "<http://host.docker.internal:4200/api>"
- Environment Variables:
sh
export PREFECT_LOGGING_LEVEL=INFO
export PREFECT_API_URL=<http://host.docker.internal:4200/api>
You would generally configure these in the environment where the Prefect server and agents run, often using .bashrc
, .zshrc
, or orchestration tools like Kubernetes Secrets or Docker Compose.
#### 2. Environment Variables for Flow Execution
To set environment variables needed during the execution of the flow, you have several options:
- Directly in the Docker Run Command:
sh
docker run -d --name prefect -v /path/to/your/local/project:/opt/prefect -e PREFECT_API_URL=<http://host.docker.internal:4200/api> --workdir /opt/prefect custom-image:latest
- Using Prefect Context and Secrets:
Prefect allows for using context variables and secrets to access environment-specific variables:
python
from prefect import task, Flow, context
from prefect.tasks.secrets import PrefectSecret
@task
def use_secret():
secret_value = context.get("my_secret")
print(f"The secret value is: {secret_value}")
with Flow("use-secret") as flow:
use_secret()
if __name__ == "__main__":
flow.run()
Ensure you have set the secret in your Prefect Cloud or Server:
sh
prefect secrets set MY_SECRET="my_secret_value"
- Via Docker Container Configuration:
When running your flow inside a Docker container, you can pass in environment variables directly during the container creation:
yaml
# prefect.yaml
version: 2.0
build: {}
pull: {}
deployments:
- name: pull-and-run-nginx
version: 1.0
entrypoint: "flow.py:pull_and_run_nginx" # This is the entrypoint for Prefect
work_queue_name: default
description: A flow to pull and run nginx:latest Docker container
storage: {}
infrastructure:
type: docker-container
image: custom-image:latest # Use your custom image
command: ["python", "/opt/prefect/flow.py"]
env:
PREFECT_API_URL: "<http://host.docker.internal:4200/api>"
MY_SECRET_ENV: "some_secret_value"
### Summary
- Prefect Server Side: Environment variables such as PREFECT_LOGGING_LEVEL
and PREFECT_API_URL
are set where Prefect server, agents, and related infrastructure is running.
- Flow Execution Side: Environment variables used within flow tasks (like credentials or specific execution configs) are set where the flow is executed. This could involve the Docker container, local machine, or via Prefect Secrets.Marvin
06/21/2024, 1:32 PMDijar Vrella
06/21/2024, 2:31 PMimport asyncio
from prefect import flow, task
from prefect_docker.images import pull_docker_image
from prefect_docker.containers import create_docker_container, start_docker_container
from prefect_docker.credentials import DockerRegistryCredentials
@task
async def pull_image(credentials):
image = await pull_docker_image(
repository="ninja/build",
tag="latest",
docker_registry_credentials=credentials
)
return image
@flow
async def pull_and_run_image():
docker_registry_credentials = await DockerRegistryCredentials.load("my-docker-registry")
image = await pull_image(docker_registry_credentials)
if __name__ == "__main__":
asyncio.run(pull_and_run_image())
I am trying to pull an docker image from a private registry. the task pull_docker_image-0 was created for task pull_docker_image. Why doesn't the output display the
0be7a4a1cf8e: Waiting
0be7a4a1cf8e: Layer already exists
7394ab65c509: Layer already exists
fb28f03e5fe8: Layer already exists
2d03e19fdd90: Layer already existsMarvin
06/21/2024, 2:31 PMin my flow.py:import asyncio from prefect import flow, task, get_run_logger from prefect_docker.images import pull_docker_image from prefect_docker.containers import create_docker_container, start_docker_container from prefect_docker.credentials import DockerRegistryCredentials @task async def pull_image(credentials): logger = get_run_logger() # Pull the latest image from the private repository logger.info("Pulling the latest image from the private repository...") image = await pull_docker_image( repository="ninja/build", tag="latest", docker_registry_credentials=credentials ) logger.info(f"Pulled image: {image}") return image @task async def create_container(): logger = get_run_logger() # Create a container with the specified flags logger.info("Creating a container with the specified flags...") container = await create_docker_container( image="ninja/build:latest", command=["python", "test.py"], volumes=[ "/ninjadata:/ninjadata" ], device_requests=[ { 'Driver': 'nvidia', 'Count': -1, 'Capabilities': [['gpu']], }, ], group_add=["ninja"], detach=True, tty=True, stdin_open=True, # -it is a
Marvin
06/21/2024, 2:33 PMin my flow.py:
import asyncio
from prefect import flow, task, get_run_logger
from prefect_docker.images import pull_docker_image
from prefect_docker.containers import create_docker_container, start_docker_container
from prefect_docker.credentials import DockerRegistryCredentials
@task
async def pull_image(credentials):
logger = get_run_logger()
# Pull the latest image from the private repository
<http://logger.info|logger.info>("Pulling the latest image from the private repository...")
image = await pull_docker_image(
repository="ninja/build",
tag="latest",
docker_registry_credentials=credentials
)
<http://logger.info|logger.info>(f"Pulled image: {image}")
return image
@flow
async def pull_and_run_image():
logger = get_run_logger()
<http://logger.info|logger.info>("Loading Docker credentials...")
# Load Docker credentials
docker_registry_credentials = await DockerRegistryCredentials.load("my-docker-registry")
# Pull the image
image = await pull_image(docker_registry_credentials)
<http://logger.info|logger.info>(f"Pulled image: {image}")
if __name__ == "__main__":
`asyncio.run(pullMarvin
06/21/2024, 2:34 PMin my flow.py:
import asyncio
from prefect import flow, task
from prefect_docker.images import pull_docker_image
from prefect_docker.containers import create_docker_container, start_docker_container
from prefect_docker.credentials import DockerRegistryCredentials
@task
async def pull_image(credentials):
image = await pull_docker_image(
repository="ninja/build",
tag="latest",
docker_registry_credentials=credentials
)
return image
@flow
async def pull_and_run_image():
docker_registry_credentials = await DockerRegistryCredentials.load("my-docker-registry")
image = await pull_image(docker_registry_credentials)
if __name__ == "__main__":
asyncio.run(pull_and_run_image())
I am trying to pull an docker image from a private registry. the task pull_docker_image-0 was created for task pull_docker_image. Why doesn't the output display the
0be7a4a1cf8e: Waiting
0be7a4a1cf8e: Layer already exists
7394ab65c509: Layer already exists
ec65d0dc039c: Layer already exists
a6bc029bd7ed: Layer already exists
125ace385f78: Layer already exists
fb28f03e5fe8: LayerMarvin
06/21/2024, 2:35 PMpull_docker_image
(like the one shown by the native Docker CLI), you need to adjust your logging to capture and display the specific steps and details of the pulling process. The prefect_docker
integration might not directly echo the same layer-by-layer progress that you'd see with the Docker CLI, but you can enhance your logging to provide more detail.
### Enhanced Logging in Prefect Task
We'll use the logging capabilities within Prefect tasks to print more detailed information about the Docker image pulling process. Here's how you can structure your task to capture and print more granular details.
### flow.py
with Detailed Logging
python
import asyncio
import os
from prefect import flow, task, get_run_logger
from prefect_docker.images import pull_docker_image
from prefect_docker.containers import create_docker_container, start_docker_container
from prefect_docker.credentials import DockerRegistryCredentials
@task
async def pull_image(credentials):
logger = get_run_logger()
<http://logger.info|logger.info>("Pulling the latest image from the private repository...")
# Start the pull and log detailed steps
image = await pull_docker_image(
repository="ninja/build",
tag="latest",
docker_registry_credentials=credentials
)
# Assuming pull_docker_image returns an object, you can log more details from it
<http://logger.info|logger.info>(f"Pulled image details: {image.__dict__}")
return image
@flow
async def pull_and_run_image():
logger = get_run_logger()
<http://logger.info|logger.info>("Loading Docker credentials...")
# Load Docker credentials
docker_registry_credentials = await DockerRegistryCredentials.load("my-docker-registry")
# Pull the image
image = await pull_image(docker_registry_credentials)
<http://logger.info|logger.info>(f"Image pulling complete. Image details: {image}")
if __name__ == "__main__":
asyncio.run(pull_and_run_image())
### Explanation
1. Logging Setup:
- Initialize a logger in each task using get_run_logger()
.
- Log detailed messages before and after pulling the Docker image.
2. Detailed Logging:
- The pull_docker_image
function's response is logged with image.__dict__
, which prints detailed metadata of the image object. Modify this based on what attributes are available in the response object.
### Capture Docker Pull Details
If the pull_docker_image
function from prefect_docker
isn't providing a detailed log (like the Docker CLI output), you might want to use Python's Docker SDK directly within a Prefect task to achieve this:
### Using Docker SDK for Detailed Output
```python
import asyncio
import os
import docker
from prefect import flow, task, get_run_logger
from prefect_docker.credentials import DockerRegistryCredentials
@task
async def pull_image_with_detailed_output(credentials):
logger = get_run_logger()
logger.info("Pulling the latest image from the private repository...")
# Initialize Docker client
client = docker.DockerClient(base_url='unix://var/run/docker.sock')
# Login to the private repository using credentials
registry_url = credentials.registry_url
username = credentials.username
password = credentials.password.get_secret_value() # Assuming this is a Prefect Secret
client.login(username=username, password=password, registry=registry_url)
# Pull image with detailed output
response = client.images.pull(repository="ninja/build", tag="latest", stream=True, decode=True)
# Log detailed response
for chunk in response:
if 'status' in chunk:
logger.info(chunk['status'])
if 'progress' in chunk:
logger.info(chunk['progress'])
@flow
async def pull_and_run_image():
logger = get_run_logger()
logger.info("Loading Docker credentials...")
# Load Docker credentials
docker_registry_credentials = await DockerRegistryCredentials.load("my-docker-registry")Marvin
06/21/2024, 2:35 PMstream=True
and decode=True
options to get detailed output in streaming mode.
4. Log Detailed Output:
- Printing log messages for each chunk of the response, capturing statuses and progress.
By integrating the Docker SDK directly, you ensure detailed logs similar to the native Docker CLI's output during the image pull process. This enhances visibility into the pulling process within your Prefect task and flow. If you need further customization or assistance, feel free to ask!Marvin
06/21/2024, 2:36 PMflow.py
that uses the Python Docker SDK to pull the image and logs detailed output:
python
import asyncio
import docker
from prefect import flow, task, get_run_logger
from prefect_docker.credentials import DockerRegistryCredentials
@task
async def pull_image_with_detailed_output(credentials):
logger = get_run_logger()
<http://logger.info|logger.info>("Pulling the latest image from the private repository...")
client = docker.from_env()
# Login to the Docker registry
client.login(
username=credentials.username,
password=credentials.password.get_secret_value(),
registry=credentials.registry_url
)
# Pull image with detailed output
image_stream = client.api.pull(
repository="ninja/build",
tag="latest",
stream=True,
decode=True
)
for chunk in image_stream:
if 'status' in chunk:
log_message = chunk['status']
if 'id' in chunk:
log_message += f" {chunk['id']}"
if 'progress' in chunk:
log_message += f" {chunk['progress']}"
<http://logger.info|logger.info>(log_message)
# Optionally, verify the image pulled successfully
image = client.images.get("ninja/build:latest")
<http://logger.info|logger.info>(f"Pulled image: {image.tags}")
@flow
async def pull_and_run_image():
logger = get_run_logger()
<http://logger.info|logger.info>("Loading Docker credentials...")
# Load Docker credentials
docker_registry_credentials = await DockerRegistryCredentials.load("my-docker-registry")
# Pull the image with detailed output
await pull_image_with_detailed_output(docker_registry_credentials)
if __name__ == "__main__":
asyncio.run(pull_and_run_image())
### Explanation
1. Docker SDK Initialization:
- Using Docker SDK to interact directly with the Docker daemon.
2. Login to Private Docker Registry:
- Authentication with the private Docker registry is handled using the credentials.
3. Streaming Pull with Detailed Logs:
- The stream=True
and decode=True
options allow you to get a detailed log for each chunk.
- Logs detailed status information for each layer during the pull.
### Running the Flow
Make sure your environment has the Docker SDK installed:
sh
pip install docker
And then run your flow:
sh
python flow.py
### Summary
This approach directly uses the Docker SDK to provide detailed, real-time feedback on the image-pulling process, closely mirroring what you'd see using the Docker CLI. By integrating this into your Prefect tasks, you get the desired level of detail in your logs. If you need further customization or assistance, feel free to ask!Dijar Vrella
06/21/2024, 3:06 PMMarvin
06/21/2024, 3:07 PMhow to fix:Worker 'DockerWorker 620bdfa0-5310-47c2-8bed-e2855c22f806' started! 150409.059 | INFO | prefect.flow_runs.worker - Worker 'DockerWorker 620bdfa0-5310-47c2-8bed-e2855c22f806' submitting flow run '4b4607d3-7775-4d33-8c30-15edb9482dcb' 150409.143 | INFO | prefect.worker.docker.dockerworker 620bdfa0-5310-47c2-8bed-e2855c22f806 - Pulling image 'prefecthq/prefect:2.19.5-python3.12'... 150429.260 | INFO | prefect.worker.docker.dockerworker 620bdfa0-5310-47c2-8bed-e2855c22f806 - Creating Docker container 'statuesque-peccary'... 150429.303 | INFO | prefect.worker.docker.dockerworker 620bdfa0-5310-47c2-8bed-e2855c22f806 - Docker container 'statuesque-peccary' has status 'created' 150429.597 | INFO | prefect.worker.docker.dockerworker 620bdfa
Marvin
06/21/2024, 3:08 PMFlow could not be retrieved from deployment
, indicates that the flow could not be found or loaded properly from the deployment. This issue could be caused by several factors, including incorrect paths, missing files, or issues with accessing the Docker storage.
### Steps to Resolve the Issue
1. Verify Deployment Configuration:
Ensure that your deployment configuration (prefect.yaml
) is correct and properly references your flow and entrypoint.
2. Ensure Flow Code Accessibility:
Make sure the flow code and all required files are accessible from the Docker container when running the flow.
3. Check Dockerfile and Volumes:
Verify that your Dockerfile is correctly set up and that volume mounts are configured to make the flow code accessible inside the Docker container.
### Example Deployment Configuration
Here's an example of a correct deployment configuration:
yaml
version: 2.0
build: {}
pull: {}
deployments:
- name: pull-and-run-nginx
version: 1.0
entrypoint: "flow.py:pull_and_run_nginx" # This is the entrypoint for Prefect
work_queue_name: default
description: A flow to pull and run nginx:latest Docker container
storage: {}
infrastructure:
type: docker-container
image: custom-image:latest # Use your custom image
command: ["python", "/opt/prefect/flow.py"]
volumes:
- "/path/to/your/local/project:/opt/prefect"
env:
PREFECT_API_URL: "<http://host.docker.internal:4200/api>"
MY_SECRET_ENV: "some_secret_value"
Ensure that the path to your local project and the flow script is correctly mounted inside the Docker container.
### Docker Run Command
Ensure you are using the correct docker run
command to make sure all required files are correctly mounted and the environment is properly set:
sh
docker run -d --name prefect -v /path/to/your/local/project:/opt/prefect -e PREFECT_API_URL=<http://host.docker.internal:4200/api> -e MY_SECRET_ENV=some_secret_value --workdir /opt/prefect custom-image:latest
### Additional Debug Steps
1. Inspect Docker Logs:
Check the logs of the Docker container to see detailed error messages:
sh
docker logs <container_id>
2. Run Docker Container Interactively:
Run an interactive Docker container to manually inspect file paths and contents:
sh
docker run -it --name prefect -v /path/to/your/local/project:/opt/prefect -e PREFECT_API_URL=<http://host.docker.internal:4200/api> -e MY_SECRET_ENV=some_secret_value --workdir /opt/prefect custom-image:latest /bin/bash
3. Verify Prefect Deployment Path:
Ensure the actual deployment path and entrypoint match what Prefect is trying to access.
### Additional References
- Prefect Deployment Documentation
- Docker Volume Mounting
By following these steps, you should be able to diagnose and fix the issue. If the problem persists, please provide more details about your deployment setup, Dockerfile, and configuration to allow for further troubleshooting.