Alireza
06/11/2024, 1:14 PMMarvin
06/11/2024, 1:14 PMbash
prefect work-pool create <work_pool_name> --type <pool_type>
6. Manage Work Pool Resources:
- Configure the work pool settings as needed, which may involve adjusting the resource limits, concurrency, and other deployment-specific configurations.
Here is a guide to push work pools that might help with additional details.
### Useful Links
- Push Work Pools on Prefect Documentation
- Prefect Work Pools
If you need to manage the number of concurrent flow runs and their allocations dynamically, there are discussions and issues on the same which you might find useful, such as limiting concurrent flow runs (GitHub Issue #6231).
Feel free to explore further by editing your work pool configurations to match your specific resource allocation needs.Alireza
06/11/2024, 1:15 PMMarvin
06/11/2024, 1:16 PMpython
from prefect_azure import AzureContainerInstanceJob
from prefect_azure_credentials import AzureContainerInstanceCredentials
container_instance_job = AzureContainerInstanceJob(
aci_credentials=AzureContainerInstanceCredentials.load("MY_BLOCK_NAME"),
resource_group_name="azure_resource_group.example.name",
subscription_id="<MY_AZURE_SUBSCRIPTION_ID>",
)
container_instance_job.save("aci-dev")
2. Build Deployment for ACI:
bash
prefect deployment build a_flow_module.py:log_hello_flow --name aci-dev -ib container-instance-job/aci-dev
3. Create Azure Container Instance Work Pool:
bash
prefect work-pool create -t azure-container-instance my-aci-work-pool
4. Start an Azure Container Instance Worker:
bash
prefect worker start -n my-aci-worker -p my-aci-work-pool
### Configure Resource Allocation (RAM and CPU)
In the container configuration, specify the resource attributes:
python
from prefect_azure.container_instance import ACI_DEFAULT_CPU, ACI_DEFAULT_MEMORY
container_instance_job = AzureContainerInstanceJob(
aci_credentials=AzureContainerInstanceCredentials.load("MY_BLOCK_NAME"),
resource_group_name="azure_resource_group.example.name",
subscription_id="<MY_AZURE_SUBSCRIPTION_ID>",
cpu=2.0, # Number of virtual CPUs
memory=4.0 # Amount of memory in GB
)
container_instance_job.save("aci-dev")
### Deployment and Resource Specification Links
- Prefect Azure Documentation
- Push Work Pools
- Azure Container Instance Documentation
This configuration helps you effectively allocate the CPU and memory resources for your Prefect tasks running on Azure Container Instances. Make sure to adjust the cpu
and memory
parameters based on your specific requirements.
If you have any issues or need further customization, consider exploring the Prefect Slack community or filing an issue on the prefect-azure GitHub repository.Alireza
06/11/2024, 1:25 PMMarvin
06/11/2024, 1:25 PMbash
prefect work-pool create <work_pool_name> --type push
3. Define the Container Resources in Deployment File:
- When defining your container job, specify the cpu
and memory
parameters.
4. Example of Resource Allocation Configuration:
python
from prefect_azure import AzureContainerInstanceJob
from prefect_azure_credentials import AzureContainerInstanceCredentials
container_instance_job = AzureContainerInstanceJob(
aci_credentials = AzureContainerInstanceCredentials.load("MY_BLOCK_NAME"),
resource_group_name = "azure_resource_group.example.name",
subscription_id = "<MY_AZURE_SUBSCRIPTION_ID>",
cpu = 2.0, # Number of virtual CPUs
memory = 4.0 # Amount of memory in GB
)
container_instance_job.save("aci-dev")
5. Build the Deployment and Register It:
bash
prefect deployment build flow.py:my_flow --name aci-dev -ib container-instance-job/aci-dev
6. Run Worker with Configuration:
bash
prefect worker start -n my-aci-worker -p <work_pool_name>
### Documentation Links
- Push Work Pools Setup
- Work Pools Tutorial
- Prefect Azure Integration
These steps should allow you to configure and allocate resources like CPU and memory for containers running as part of a push work pool in Prefect on Azure. If you need further assistance, refer to the documentation links or the Prefect Slack and forum communities.Alireza
06/11/2024, 1:26 PMMarvin
06/11/2024, 1:27 PMcpu
and memory
parameters.
### Example Code to Update the Job Configuration
Here's an example of how you can update your AzureContainerInstanceJob
to specify the CPU and memory allocation:
python
from prefect_azure import AzureContainerInstanceJob
from prefect_azure_credentials import AzureContainerInstanceCredentials
# Load your existing credentials block
aci_credentials = AzureContainerInstanceCredentials.load("MY_BLOCK_NAME")
# Create the job with additional resource specifications
container_instance_job = AzureContainerInstanceJob(
aci_credentials=aci_credentials,
resource_group_name="azure_resource_group.example.name",
subscription_id="<MY_AZURE_SUBSCRIPTION_ID>",
cpu=2.0, # Number of virtual CPUs you want to allocate
memory=4.0 # Amount of memory in GB you want to allocate
)
# Save the updated job configuration
container_instance_job.save("aci-dev")
### Update Your Deployment
After updating the job configuration, ensure your deployment uses the updated job configuration.
bash
prefect deployment build flow.py:my_flow --name aci-dev -ib container-instance-job/aci-dev
### Restart Worker
If the worker is already running, restart it to apply the new configuration.
bash
prefect worker start -n my-aci-worker -p <work_pool_name>
### Documentation Links for Reference
- Push Work Pools Setup
- Prefect Azure Integration
By following these steps, you will be able to edit the block and allocate the required resources like CPU and memory for your containers.Alireza
06/11/2024, 1:34 PMMarvin
06/11/2024, 1:34 PMalright, but got another error on s3fs since I’m using s3 bucket for storage. even though I’m sure I’m installing the s3fs package within the docker container. but still getting this error: Flow could not be retrieved from deployment.Traceback (most recent call last): File “/usr/local/lib/python3.10/site-packages/fsspec/registry.py”, line 242, in get_filesystem_class register_implementation(protocol, _import_class(bit[“class”])) File “/usr/local/lib/python3.10/site-packages/fsspec/registry.py”, line 277, in _import_class mod = importlib.import_module(mod) File “/usr/local/lib/python3.10/importlib/__init__.py”, line 126, in import_module return _bootstrap._gcd_import(name[level:], package, level) File “”, line 1050, in _gcd_import File “”, line 1027, in _find_and_load File “”, line 1004, in _find_and_load_unlocked ModuleNotFoundError: No module named ‘s3fs’ The above exception was the direct cause of the following exception: Traceback (most recent call last): File “/usr/local/lib/python3.10/site-packages/prefect/filesystems.py”, line 412, in filesystem self._filesystem =
Alireza
06/11/2024, 1:34 PMMarvin
06/11/2024, 1:34 PMalright, but got another error on s3fs since I’m using s3 bucket for storage. even though I’m sure I’m installing the s3fs package within the docker container. but still getting this error: Flow could not be retrieved from deployment.Traceback (most recent call last): File “/usr/local/lib/python3.10/site-packages/fsspec/registry.py”, line 242, in get_filesystem_class register_implementation(protocol, _import_class(bit[“class”])) File “/usr/local/lib/python3.10/site-packages/fsspec/registry.py”, line 277, in _import_class mod = importlib.import_module(mod) File “/usr/local/lib/python3.10/importlib/__init__.py”, line 126, in import_module return _bootstrap._gcd_import(name[level:], package, level) … ModuleNotFoundError: No module named ‘s3fs’ The above exception was the direct cause of the following exception: Traceback (most recent call last): File “/usr/local/lib/python3.10/site-packages/prefect/filesystems.py”, line 412, in filesystem self._filesystem = fsspec.filesystem(scheme, **self.settings) File “/usr/local/lib/python3.10/site-packages/fsspec/registry.py”, line 302, in filesystem cls = get_filesystem
Alireza
06/11/2024, 1:35 PMMarvin
06/11/2024, 1:35 PMalright, but got another error on s3fs since I’m using s3 bucket for storage. even though I’m sure I’m installing the s3fs package within the docker container. but still getting this error: Flow could not be retrieved from deployment.Traceback (most recent call last): File “/usr/local/lib/python3.10/site-packages/fsspec/registry.py”, line 242, in get_filesystem_class register_implementation(protocol, _import_class(bit[“class”])) File “/usr/local/lib/python3.10/site-packages/fsspec/registry.py”, line 277, in _import_class mod = importlib.import_module(mod) File “/usr/local/lib/python3.10/importlib/__init__.py”, line 126, in import_module return _bootstrap._gcd_import(name[level:], package, level) … ModuleNotFoundError: No module named ‘s3fs’ The above exception was the direct cause of the following exception: Traceback (most recent call last): File “/usr/local/lib/python3.10/site-packages/prefect/filesystems.py”, line 412, in filesystem self._filesystem = fsspec.filesystem(scheme, **self.settings) File “/usr/local/lib/python3.10/site-packages/fsspec/registry.py”, line 302, in filesystem cls = get_filesystem
Alireza
06/11/2024, 1:35 PMMarvin
06/11/2024, 1:36 PMModuleNotFoundError: No module named 's3fs'
) suggests that the s3fs
package is not being successfully recognized in your Docker container. Here's a step-by-step guide to ensure that s3fs
is correctly installed:
### Steps to Resolve the s3fs
Error
1. Ensure s3fs
is Properly Listed in Requirements:
- Make sure s3fs
is listed in your requirements.txt
or setup.py
.
txt
# requirements.txt
s3fs==2021.11.1 # replace with your required version
2. Install s3fs
in Dockerfile:
- Ensure your Dockerfile installs the required packages.
Dockerfile
FROM prefecthq/prefect:latest-python3.9 # Example base image
# Install s3fs
RUN pip install s3fs
3. Rebuild Your Docker Image:
- After updating your Dockerfile, rebuild the Docker image to ensure the s3fs
package is included.
bash
docker build -t my-prefect-image .
4. Run the Docker Container and Check Installation:
- Run your Docker container and check if s3fs
is installed.
bash
docker run -it my-prefect-image
python -c "import s3fs; print(s3fs.__version__)"
### Additional Troubleshooting
- Check for Dependency Conflicts:
- Sometimes, pip
may not install the latest compatible version of dependencies. You can use pip check
to find conflicts.
bash
pip check
- Explicit Installation:
- If you encounter issues during installation, you may need to install specific versions of dependencies to avoid conflicts.
bash
pip install s3fs==2021.11.1 botocore==1.27.19 boto3==1.24.19
### Reference Documentation
- S3 Filesystem Block
- Handling Dependencies in Docker
### Related GitHub Issues
- s3fs dependency issue in filesystems: Issue with loading the S3
block.
By ensuring that the s3fs
package is correctly specified in your Docker image and handling any dependency conflicts, you should be able to resolve the import error and successfully utilize S3 for your storage needs.Alireza
06/11/2024, 1:51 PMMarvin
06/11/2024, 1:52 PMs3fs
package and other dependencies might behave differently on Windows containers due to differences in the operating systems' handling of filesystems and dependencies.
Here are some steps to troubleshoot and potentially resolve the issue:
### 1. Verify s3fs
Installation in the Windows Container
Check if s3fs
is installed correctly and available in your environment inside the Windows container.
cmd
docker exec -it <container_id> cmd
pip show s3fs
### 2. Reinstall s3fs
Inside the Container
Try reinstalling s3fs
inside the running container to ensure it properly installs any dependencies.
cmd
docker exec -it <container_id> cmd
pip install --force-reinstall s3fs
### 3. Check for File Access and Permissions
Ensure that the Windows container has the necessary permissions to access the S3 bucket and the filesystem.
### 4. Alternative: Use Linux-Based Container
As a more robust solution, consider using a Linux-based container if your environment allows it. Linux containers are generally better-supported and might mitigate issues related to file paths and package installations.
### Example Dockerfile for Linux-Based Container
Dockerfile
FROM prefecthq/prefect:latest
# Install s3fs
RUN pip install s3fs
### Rebuild and Run the New Image
bash
docker build -t my-prefect-linux-image .
docker run -it my-prefect-linux-image
### Example of Running Linux Container on Windows Host
Ensure Docker is set to use Linux containers:
1. Right-click on the Docker icon in the system tray.
2. Select "Switch to Linux containers."
### Additional Resources
- Prefect Discussion on S3 and Docker: GitHub Issue #6219.
- Docker Documentation on Running Linux Containers on Windows: Docker Docs.
By verifying the installation in the Windows container or switching to a Linux-based container, you should be able to address the s3fs
import issue and retrieve flows from your S3 storage.Alireza
06/11/2024, 1:54 PMAlireza
06/11/2024, 1:54 PMMarvin
06/11/2024, 1:54 PMbash
pip install -U prefect-azure
2. Register Azure Block Types:
Register the new block types with Prefect Cloud or your self-hosted Prefect server:
bash
prefect block register -m prefect_azure
3. Create an Azure Blob Storage Bucket:
- Create a storage account and a container within it on the Azure portal.
- Ensure the container is either publicly accessible or set up a service principal with appropriate read/write permissions.
4. Set Up an Azure Blob Storage Credentials Block:
- Create an access key for a role with sufficient permissions to access the blob.
- Create an Azure Blob Storage Credentials block either via code or the Prefect UI. Enter a name for the block and paste the connection string into the Connection String field.
### Example Code to Create and Use Azure Blob Storage Block
#### Creating the Azure Blob Storage Block
python
from prefect_azure import AzureBlobStorage
from prefect.blocks.system import JSON
# Create a block with your Azure Blob Storage credentials
blob_storage_block = AzureBlobStorage(
container="my-container",
connection_string="DefaultEndpointsProtocol=https;AccountName=myaccountname;AccountKey=myaccountkey;EndpointSuffix=<http://core.windows.net|core.windows.net>"
)
# Save the block
blob_storage_block.save("my-azure-blob-storage")
#### Using the Azure Blob Storage Block in a Deployment
python
from prefect.deployments import Deployment
from my_flow import my_flow_function
deployment = Deployment.build_from_flow(
flow=my_flow_function,
name="my-flow-deployment",
storage=AzureBlobStorage.load("my-azure-blob-storage"),
)
deployment.apply()
### Reference Links
- Moving Data with Prefect
- Deployment Storage Guide
By using Azure Blob Storage, you can store your Prefect flows and data securely and efficiently. This alternative should provide a robust solution for your storage needs on Azure Cloud.Alireza
06/11/2024, 3:37 PMasyncio - Unclosed client session
while deploying a flow with azure blob storage container. is there any configuration on the blob storage to prevent this?Marvin
06/11/2024, 3:37 PMasyncio - Unclosed client session
is often related to the improper handling of asynchronous client sessions in your code. This can be particularly relevant when interacting with cloud services like Azure Blob Storage. Here are some steps to help you resolve this issue:
### Proper Handling of Asynchronous Client Sessions
#### Use async with
to Ensure Proper Cleanup
Ensure you are using async with
to manage your sessions, so they close properly even if an error occurs.
### Example of Properly Closing Sessions
Here is an example of how you can correctly handle Azure Blob Storage sessions in an asynchronous flow:
python
import os
import asyncio
from prefect import flow
from prefect_azure import AzureBlobStorageCredentials
@flow
async def example_get_client_flow():
connection_string = os.getenv("AZURE_STORAGE_CONNECTION_STRING")
azure_credentials = AzureBlobStorageCredentials(
connection_string=connection_string,
)
async with azure_credentials.get_client() as blob_service_client:
# run other code here
pass
asyncio.run(example_get_client_flow())
### Ensure Proper Cleanup in Your Flows
Make sure any asynchronous clients you are using are correctly closed at the end of their use:
python
from prefect import flow
from prefect_azure import AzureBlobStorage
@flow
async def my_flow():
async with AzureBlobStorage.load("my-azure-blob-storage") as blob_storage:
# Your code to interact with Azure Blob Storage
pass
# Ensure all sessions are closed
await blob_storage.close()
asyncio.run(my_flow())
### Alternative Storage Solutions
If you continue experiencing issues, consider exploring if other storage backends such as AWS S3 or Google Cloud Storage exhibit similar behavior. Switching storage solutions might help isolate whether the issue is specific to Azure.
### Resources
- Azure Blob Storage Session Handling
- Handling Asynchronous Sessions
By carefully managing your asynchronous sessions and ensuring proper cleanup, you can avoid the asyncio - Unclosed client session
warnings and ensure stable interactions with Azure Blob Storage.Alireza
06/11/2024, 3:50 PMMarvin
06/11/2024, 3:50 PMgetting this error running my flow: Flow could not be retrieved from deployment.Traceback (most recent call last): File “/usr/local/lib/python3.10/site-packages/prefect/engine.py”, line 422, in retrieve_flow_then_begin_flow_run else await load_flow_from_flow_run(flow_run, client=client) File “/usr/local/lib/python3.10/site-packages/prefect/client/utilities.py”, line 100, in with_injected_client return await fn(*args, **kwargs) File “/usr/local/lib/python3.10/site-packages/prefect/deployments/deployments.py”, line 283, in load_flow_from_flow_run storage_block = Block._from_block_document(storage_document) File “/usr/local/lib/python3.10/site-packages/prefect/blocks/core.py”, line 634, in _from_block_document else cls.get_block_class_from_schema(block_document.block_schema) File “/usr/local/lib/python3.10/site-packages/prefect/blocks/core.py”, line 688, in get_block_class_from_schema return cls.get_block_class_from_key(block_schema_to_key(schema)) File “/usr/local/lib/python3.10/site-packages/prefect/blocks/core.py”, line 699, in get_block_class_from_key return lookup_type(cls, key) File “/usr/local
Alireza
06/11/2024, 3:51 PMAlireza
06/11/2024, 4:27 PMMarvin
06/11/2024, 4:27 PMFlow could not be retrieved from deployment.Traceback (most recent call last): File “/usr/local/lib/python3.10/site-packages/prefect/engine.py”, line 422, in retrieve_flow_then_begin_flow_run else await load_flow_from_flow_run(flow_run, client=client) File “/usr/local/lib/python3.10/site-packages/prefect/client/utilities.py”, line 100, in with_injected_client return await fn(*args, **kwargs) File “/usr/local/lib/python3.10/site-packages/prefect/deployments/deployments.py”, line 283, in load_flow_from_flow_run storage_block = Block._from_block_document(storage_document) File “/usr/local/lib/python3.10/site-packages/prefect/blocks/core.py”, line 634, in _from_block_document else cls.get_block_class_from_schema(block_document.block_schema) File “/usr/local/lib/python3.10/site-packages/prefect/blocks/core.py”, line 688, in get_block_class_from_schema return cls.get_block_class_from_key(block_schema_to_key(schema)) File “/usr/local/lib/python3.10/site-packages/prefect/blocks/core.py”, line 699, in get_block_class_from_key return lookup_type(cls, key) File “/usr/local/lib/python3.10/site-pack
Alireza
06/11/2024, 4:27 PMMarvin
06/11/2024, 4:27 PMFlow could not be retrieved from deployment.Traceback (most recent call last): File “/usr/local/lib/python3.10/site-packages/prefect/engine.py”, line 422, in retrieve_flow_then_begin_flow_run else await load_flow_from_flow_run(flow_run, client=client) File “/usr/local/lib/python3.10/site-packages/prefect/client/utilities.py”, line 100, in with_injected_client return await fn(*args, **kwargs) File “/usr/local/lib/python3.10/site-packages/prefect/deployments/deployments.py”, line 283, in load_flow_from_flow_run storage_block = Block._from_block_document(storage_document) File “/usr/local/lib/python3.10/site-packages/prefect/blocks/core.py”, line 634, in _from_block_document else cls.get_block_class_from_schema(block_document.block_schema) return cls.get_block_class_from_key(block_schema_to_key(schema)) File “/usr/local/lib/python3.10/site-packages/prefect/blocks/core.py”, line 699, in get_block_class_from_key return lookup_type(cls, key) File “/usr/local/lib/python3.10/site-packages/prefect/utilities/dispatch.py”, line 186, in lookup_type KeyError: “No class found for dispatch key ‘azure-blob-storage
Alireza
06/11/2024, 4:28 PMMarvin
06/11/2024, 4:28 PMKeyError: “No class found for dispatch key ‘azure-blob-storage-container’ in registry for type ‘Block’.”
error indicates that Prefect can't find the azure-blob-storage-container
class, which means the block hasn't been registered correctly or the environment where the flow runs isn't set up properly.
Here's a structured approach to resolving this issue:
### Step-by-Step Resolution
1. Install prefect-azure
and Register the Block
Ensure that the prefect-azure
package is installed and the block is registered in your environment.
bash
pip install -U prefect-azure
prefect block register -m prefect_azure
2. Verify Block Registration in Prefect UI
- Go to your Prefect UI (Prefect Cloud or Prefect Orion).
- Navigate to the Blocks section.
- Ensure that the azure-blob-storage-container
block is listed and correctly configured.
3. Update Your Dockerfile if Using Docker
If you are using Docker to run your flows, ensure the Dockerfile installs the necessary dependencies and registers the blocks.
Dockerfile
FROM prefecthq/prefect:latest
# Install prefect-azure
RUN pip install -U prefect-azure
# Register the blocks
RUN prefect block register -m prefect_azure
4. Rebuild Your Docker Image
After updating the Dockerfile, rebuild and run the Docker image.
bash
docker build -t my-prefect-image .
docker run -it my-prefect-image prefect block register -m prefect_azure
5. Ensure Correct Block Usage in Deployment
Ensure your deployment script correctly refers to the azure-blob-storage-container
block:
python
from prefect_azure import AzureBlobStorage
# Example of creating and using Azure Blob Storage Block
blob_storage_block = AzureBlobStorage(
container="my-container",
connection_string="DefaultEndpointsProtocol=https;AccountName=myaccountname;AccountKey=myaccountkey;EndpointSuffix=<http://core.windows.net|core.windows.net>"
)
# Save the block
blob_storage_block.save("my-azure-blob-storage")
python
from prefect import flow
from prefect_azure import AzureBlobStorage
@flow
def my_flow():
blob_storage = AzureBlobStorage.load("my-azure-blob-storage")
# Add your flow logic here
my_flow()
6. Restart Prefect Infrastructure
If you're running Prefect as a service or using Prefect Cloud, restart the service to pick up the newly registered blocks.
7. Run and Test the Deployment
Verify that the flow can now be retrieved from the deployment without issues.
### Check for Issues in Related Code
Ensure that any async operations or resource handling in your flow adhere to best practices to avoid issues like unclosed sessions:
python
import asyncio
from prefect import flow
from prefect_azure import AzureBlobStorageCredentials
@flow
async def example_get_client_flow():
connection_string = os.getenv("AZURE_STORAGE_CONNECTION_STRING")
azure_credentials = AzureBlobStorageCredentials(
connection_string=connection_string,
)
async with azure_credentials.get_client() as blob_service_client:
# run other code here
pass
asyncio.run(example_get_client_flow())
### Additional Resources
- Prefect Azure Integration Guide
- Azure Blob Storage Documentation
By following these steps, you should be able to resolve the KeyError
related to the azure-blob-storage-container
block and ensure that your flow can retrieve the necessary deployment information.Alireza
06/12/2024, 12:46 PMMarvin
06/12/2024, 12:47 PMprefect-gams-windows:latest
) cannot be accessed. This is often due to issues with image availability or registry credentials.
Here are some steps to troubleshoot and resolve this issue:
### Step-by-Step Resolution
1. Verify Docker Image Accessibility
Ensure that the Docker image prefect-gams-windows:latest
is available in a container registry that Azure can access.
2. Check Container Registry Credentials
Ensure that you have correctly configured the credentials for the container registry where the image is hosted.
### Azure Container Registry (ACR) Example
If you are using Azure Container Registry (ACR), follow these steps:
#### Create an Azure Container Registry
1. Create the registry:
bash
az acr create --resource-group myResourceGroup --name myRegistry --sku Basic
2. Log in to the registry:
bash
az acr login --name myRegistry
3. Tag and push your Docker image:
bash
docker tag prefect-gams-windows:latest <http://myRegistry.azurecr.io/prefect-gams-windows:latest|myRegistry.azurecr.io/prefect-gams-windows:latest>
docker push <http://myRegistry.azurecr.io/prefect-gams-windows:latest|myRegistry.azurecr.io/prefect-gams-windows:latest>
#### Configure Credentials in Prefect
1. Create Azure Container Registry Credentials Block:
python
from prefect_azure import AzureContainerRegistryCredentials
acr_credentials = AzureContainerRegistryCredentials(
registry_url="<http://myRegistry.azurecr.io|myRegistry.azurecr.io>",
username="myRegistryUsername",
password="myRegistryPassword"
)
acr_credentials.save("my-azure-container-registry")
2. Create or Update Docker Image Block:
python
from prefect.blocks.system import DockerContainer
docker_container_block = DockerContainer(
image="<http://myRegistry.azurecr.io/prefect-gams-windows:latest|myRegistry.azurecr.io/prefect-gams-windows:latest>",
registry_credentials=AzureContainerRegistryCredentials.load("my-azure-container-registry")
)
docker_container_block.save("my-docker-container")
3. Configure Your Push Work Pool to Use the Docker Image Block:
Ensure your work pool configuration uses the my-docker-container
block.
### Using Docker Hub or Another Registry
If using Docker Hub or another container registry, configure the credentials accordingly. For Docker Hub:
python
from prefect.blocks.system import DockerRegistry
docker_registry_block = DockerRegistry(
registry_url="<http://index.docker.io|index.docker.io>",
username="myDockerHubUsername",
password="myDockerHubPassword"
)
docker_registry_block.save("my-docker-hub-registry")
docker_container_block = DockerContainer(
image="myDockerHubUsername/prefect-gams-windows:latest",
registry_credentials=DockerRegistry.load("my-docker-hub-registry")
)
docker_container_block.save("my-docker-container")
### Additional Checks
1. Public vs. Private Images: Ensure the image is publicly accessible if no authentication is provided.
2. Correct Image Path: Verify the full path to the image, including any necessary prefixes for the registry (e.g., <http://myRegistry.azurecr.io|myRegistry.azurecr.io>
or `index.docker.io/username`).
### Additional Resources
- Azure Container Instances Documentation
- Azure Container Registry Documentation
By following these steps, you should be able to provide the correct image path and credentials, thereby resolving the issue of the inaccessible Docker image and allowing your push work pool to deploy successfully.Alireza
06/12/2024, 12:51 PMMarvin
06/12/2024, 12:52 PMAzureContainerRegistryCredentials
. However, you can still manage authentication to Azure Container Registry (ACR) using a service principal or manage the authentication directly using other blocks and configurations.
### Accessing Azure Container Registry (ACR) Using Service Principal
Here’s how to set it up:
1. Create an Azure Service Principal:
- This service principal will allow your Azure Container Instances to pull images from the Azure Container Registry.
bash
az ad sp create-for-rbac --name acr-pull --role Contributor --scopes /subscriptions/{subscription_id}/resourceGroups/{resource_group}/providers/Microsoft.ContainerRegistry/registries/{acr_name}
Capture the output, which will include appId
(Client ID), password
(Client Secret), and tenant
.
2. Create Azure Container Registry Credentials Block Using DockerRegistry:
- Configure a DockerRegistry block in Prefect for the ACR.
python
from prefect.blocks.system import DockerRegistry
acr_credentials = DockerRegistry(
registry_url="<http://myRegistry.azurecr.io|myRegistry.azurecr.io>",
username="clientId",
password="clientSecret"
)
acr_credentials.save("my-acr-registry-credentials")
3. Create a Docker Image Block:
- Use the DockerRegistry credentials block to reference the image.
python
from prefect.blocks.system import DockerContainer
docker_container_block = DockerContainer(
image="<http://myRegistry.azurecr.io/prefect-gams-windows:latest|myRegistry.azurecr.io/prefect-gams-windows:latest>",
registry_credentials=DockerRegistry.load("my-acr-registry-credentials")
)
docker_container_block.save("my-docker-container")
4. Configure Your Push Work Pool to Use the Docker Image Block:
- Ensure your work pool configuration uses the my-docker-container
block.
### Complete Example
Here’s a complete example to tie things together:
#### Create and Register Blocks
python
from prefect.blocks.system import DockerRegistry, DockerContainer
# Define and save the Docker registry credentials block
acr_credentials = DockerRegistry(
registry_url="<http://myRegistry.azurecr.io|myRegistry.azurecr.io>",
username="clientId", # Output from `az ad sp create-for-rbac`
password="clientSecret" # Output from `az ad sp create-for-rbac`
)
acr_credentials.save("my-acr-registry-credentials")
# Define and save the Docker container block
docker_container_block = DockerContainer(
image="<http://myRegistry.azurecr.io/prefect-gams-windows:latest|myRegistry.azurecr.io/prefect-gams-windows:latest>",
registry_credentials=DockerRegistry.load("my-acr-registry-credentials")
)
docker_container_block.save("my-docker-container")
#### Use the Block in Your Deployment
python
from prefect.deployments import Deployment
deployment = Deployment.build_from_flow(
flow=my_flow_function, # Replace with your flow function
name="my-flow-deployment",
infrastructure=DockerContainer.load("my-docker-container")
)
deployment.apply()
### Ensure ACI Can Use the ACR
Ensure the Azure Container Instance (ACI) is permitted to use the ACR. This typically involves assigning the service principal with read permissions to your ACR.
### Key Links for Reference
- Azure CLI to Create Service Principal
- Prefect DockerRegistry Block
- Azure Container Instances Documentation
By using this approach, you can manage your ACR credentials and Docker images effectively, ensuring your push work pool has the necessary access and configurations to run your flows.Alireza
06/12/2024, 1:03 PMMarvin
06/12/2024, 1:03 PMWindows
OS. Unfortunately, Prefect does not expose OS selection directly through its existing blocks, but it does allow configuration via YAML or Python where customizations can be made.
2. Create or Update the Azure Container Instance Block:
You may need to set up and register your Azure Container Instance with the appropriate OS settings.
#### Example YAML Configuration (For setting OS platform)
If you have the custom YAML setup, you can specify the OS type as follows:
yaml
apiVersion: 2018-10-01
location: eastus
name: myACI
properties:
osType: Windows # Change this to Windows
containers:
- name: mycontainer
image: <http://my-acr.azurecr.io/prefect-gams-windows:latest|my-acr.azurecr.io/prefect-gams-windows:latest>
resources:
requests:
cpu: 1.0
memoryInGb: 1.5
3. Ensure the Prefect Deployment References the Correct OS
If you manage the container configuration within Prefect, ensure that the ACI block references are set as needed:
python
from prefect_azure.container_instance import AzureContainerInstanceJob, AzureContainerInstanceCredentials
azure_credentials_block = AzureContainerInstanceCredentials(
resource_group_name="myResourceGroup",
subscription_id="<my_subscription_id>",
tenant_id="<my_tenant_id>",
client_id="<my_client_id>",
client_secret="<my_client_secret>"
)
azure_credentials_block.save("my-azure-credentials")
azure_container_instance_job = AzureContainerInstanceJob(
aci_credentials=AzureContainerInstanceCredentials.load("my-azure-credentials"),
region="eastus",
osType="Windows", # Specify the OS as Windows here
container_resource_requests=dict(cpu=1.0, memory=1.5),
container_name="mycontainer",
image="<http://my-acr.azurecr.io/prefect-gams-windows:latest|my-acr.azurecr.io/prefect-gams-windows:latest>"
)
azure_container_instance_job.save("my-azure-job")
### Rebuild and Redeploy
After configuring the OS type to Windows:
1. Rebuild and push your Docker image to ACR.
2. Redeploy your flow to ensure the configurations are applied.
### Reference Links
- Azure Container Instances Documentation
- Prefect Azure Container Instances Setup
By ensuring your Azure Container Instance is configured to use the Windows OS, the deployment should work with your specified Docker image. If you continue to encounter issues, verifying your YAML or Python configurations and ensuring all dependencies and settings align with the Windows OS requirements is advisable.Alireza
06/12/2024, 1:06 PMMarvin
06/12/2024, 1:06 PMosType
is set to Windows, you can provide additional configuration when setting up the block. Prefect allows you to add custom keyword arguments to blocks, which can be particularly useful for setting properties such as the osType
.
Here is how you can do it:
### Step-by-Step Guide
1. Update the Block using additional_config
for osType
:
Provide the required configuration directly while creating the block.
### Example Code to Set osType
as Windows for Azure Container Instance
python
from prefect_azure.container_instance import AzureContainerInstanceJob, AzureContainerInstanceCredentials
# Create credentials block
azure_credentials_block = AzureContainerInstanceCredentials(
resource_group_name="myResourceGroup",
subscription_id="my_subscription_id",
tenant_id="my_tenant_id",
client_id="my_client_id",
client_secret="my_client_secret"
)
azure_credentials_block.save("my-azure-credentials")
# Create Azure Container Instance Job with Windows OS Type
azure_container_instance_job = AzureContainerInstanceJob(
aci_credentials=AzureContainerInstanceCredentials.load("my-azure-credentials"),
region="eastus",
additional_config={
"osType": "Windows"
},
container_resource_requests={"cpu": 1.0, "memory": 1.5},
container_name="mycontainer",
image="<http://my-acr.azurecr.io/prefect-gams-windows:latest|my-acr.azurecr.io/prefect-gams-windows:latest>"
)
azure_container_instance_job.save("my-azure-aci-job")
2. Using the Modified Block in Deployment
Ensure that your deployment script references this modified block:
python
from prefect.deployments import Deployment
from my_flow import my_flow_function # Replace with your actual flow import
# Assuming your flow is defined in my_flow_function
deployment = Deployment.build_from_flow(
flow=my_flow_function,
name="my-flow-deployment",
infrastructure=AzureContainerInstanceJob.load("my-azure-aci-job")
)
deployment.apply()
3. Verify the Configuration in Prefect UI
- Go to Prefect UI.
- Navigate to Blocks and verify that AzureContainerInstanceJob
has the additional configuration with osType
set to Windows
.
### Additional Resources
- Azure Container Instances Documentation
- Azure ACI Job Block Documentation
By setting the osType
to Windows
in the additional_config
parameter when creating the AzureContainerInstanceJob
, you ensure that your container runs with the specified OS type, resolving the issue.Alireza
06/12/2024, 1:24 PMMarvin
06/12/2024, 1:24 PMregion
parameter when creating the AzureContainerInstanceJob
.
Here is how you can do it:
### Step-by-Step Guide to Set Azure Region for Container Instance
1. Create or Update the Azure Container Instance Job Block with Region:
Specify the region (e.g., "eastus") while setting up the AzureContainerInstanceJob
.
### Example Code to Set Azure Region for Container Instance
python
from prefect_azure.container_instance import AzureContainerInstanceJob, AzureContainerInstanceCredentials
# Create or load Azure credentials block
azure_credentials_block = AzureContainerInstanceCredentials(
resource_group_name="myResourceGroup",
subscription_id="my_subscription_id",
tenant_id="my_tenant_id",
client_id="my_client_id",
client_secret="my_client_secret"
)
azure_credentials_block.save("my-azure-credentials")
# Create Azure Container Instance Job with the specified region
azure_container_instance_job = AzureContainerInstanceJob(
aci_credentials=AzureContainerInstanceCredentials.load("my-azure-credentials"),
region="eastus", # Specify the Azure region here
additional_config={"osType": "Windows"}, # Ensure osType is set to Windows if needed
container_resource_requests={"cpu": 1.0, "memory": 1.5},
container_name="mycontainer",
image="<http://my-acr.azurecr.io/prefect-gams-windows:latest|my-acr.azurecr.io/prefect-gams-windows:latest>"
)
azure_container_instance_job.save("my-azure-aci-job")
2. Using the Region-Specified Block in Deployment
Ensure your deployment script references this block with the specified region:
python
from prefect.deployments import Deployment
from my_flow import my_flow_function # Replace with your actual flow import
deployment = Deployment.build_from_flow(
flow=my_flow_function,
name="my-flow-deployment",
infrastructure=AzureContainerInstanceJob.load("my-azure-aci-job")
)
deployment.apply()
3. Deployment and Verification
- Deploy your flow and check the Prefect UI to verify that the container instance is being created in the specified region.
### Documentation and Resources
- Azure Container Instances - Regions and availability
- Prefect Azure Container Instance Integration
By including the region
parameter in the AzureContainerInstanceJob
block, you ensure that the container instance is created in the specified Azure region. This setup allows you to control where your resources are deployed, providing the flexibility needed for regional compliance, performance, and cost considerations.Alireza
06/12/2024, 2:03 PMMarvin
06/12/2024, 2:04 PMguest RPC failure: The system cannot find the file specified.: unknown
suggests there might be an issue with the configuration or the file path specified for the container. This is often related to platform-specific issues, such as file paths or missing dependencies for Windows containers.
### Troubleshooting Steps
1. Verify the Image and File Paths
Ensure that all file paths specified in your Docker image are correct and valid for the Windows OS. Windows paths usually use backslashes (e.g., C:\\path\\to\\file
) but should work with forward slashes.
2. Check for Required Dependencies
Make sure that your Docker image includes all necessary dependencies and that they are correctly installed. Windows containers may require different dependencies than Linux containers.
3. Rebuild Your Docker Image
Rebuild your Docker image to ensure that any recent changes to files or dependencies are included.
bash
docker build -t <http://my-acr.azurecr.io/prefect-gams-windows:latest|my-acr.azurecr.io/prefect-gams-windows:latest> .
docker push <http://my-acr.azurecr.io/prefect-gams-windows:latest|my-acr.azurecr.io/prefect-gams-windows:latest>
4. Check Custom Entrypoint or Command
If you have specified a custom entrypoint or command for your container, verify that it's valid and that the specified file exists within the container.
### Example Dockerfile for Windows Container
Here’s an example Dockerfile to ensure compatibility with Windows:
Dockerfile
# Use a base Windows image
FROM <http://mcr.microsoft.com/windows:latest|mcr.microsoft.com/windows:latest>
# Set environment variables if needed
ENV VAR_NAME value
# Copy necessary files
COPY . /app
# Install any dependencies
RUN powershell -Command Set-ExecutionPolicy Bypass -Scope Process -Force; `
[Net.ServicePointManager]::SecurityProtocol = [Net.SecurityProtocolType]::Tls12; `
Invoke-WebRequest -Uri <https://path/to/dependency> -OutFile C:\path\to\dependency
# Set the working directory
WORKDIR /app
# Specify the entrypoint or command
ENTRYPOINT ["powershell", "-Command", "path\\to\\entrypoint.ps1"]
### Create or Update the Azure Container Instance Job Block
Ensure your block setup includes the correct image and additional configurations:
python
from prefect_azure.container_instance import AzureContainerInstanceJob, AzureContainerInstanceCredentials
# Create or load Azure credentials block
azure_credentials_block = AzureContainerInstanceCredentials(
resource_group_name="myResourceGroup",
subscription_id="my_subscription_id",
tenant_id="my_tenant_id",
client_id="my_client_id",
client_secret="my_client_secret"
)
azure_credentials_block.save("my-azure-credentials")
# Create Azure Container Instance Job with the specified region and Windows OS
azure_container_instance_job = AzureContainerInstanceJob(
aci_credentials=AzureContainerInstanceCredentials.load("my-azure-credentials"),
region="eastus", # Specify the Azure region
additional_config={"osType": "Windows"},
container_resource_requests={"cpu": 1.0, "memory": 1.5},
container_name="mycontainer",
image="<http://my-acr.azurecr.io/prefect-gams-windows:latest|my-acr.azurecr.io/prefect-gams-windows:latest>"
)
azure_container_instance_job.save("my-azure-aci-job")
### Verify and Deploy
1. Ensure the deployment references this updated block.
2. Check Azure logs for any additional details if issues persist.
By following these steps, you can address configuration issues related to file paths or missing files in your Windows container, ensuring that the specified Azure container instance is correctly configured and started. If additional issues arise, verifying paths and dependencies within the container environment can often highlight the root cause.Alireza
06/12/2024, 2:09 PM"/opt/prefect/entrypoint.sh"
is for the prefect linux image. How is it with the prefect installed on Windows container?Marvin
06/12/2024, 2:10 PM/opt/prefect/entrypoint.sh
is intended for Linux-based containers and won't work as-is for a Windows container. You will need to adapt or create an appropriate entrypoint script for the Windows environment.
Here's how you can set up Prefect with a Windows-based Docker container:
### Step-by-Step Guide
1. Create an Entry Point Script for Windows
Create a PowerShell script or a batch script as the entry point for your Prefect flow. The script should activate any necessary environment and start the Prefect agent or worker.
#### Example PowerShell Script (entrypoint.ps1
)
powershell
# entrypoint.ps1
# Activate environment if using a virtualenv or conda, e.g.:
# & "C:\path\to\venv\Scripts\Activate.ps1"
# Ensure Prefect is installed and available
pip install prefect
# Run the Prefect agent or worker
prefect agent start -q "my-work-queue"
2. Update the Dockerfile for Windows
Modify your Dockerfile to copy the entry point script and set it as the entry point.
#### Example Dockerfile
Dockerfile
# Use a base Windows image
FROM <http://mcr.microsoft.com/windows/servercore:ltsc2019|mcr.microsoft.com/windows/servercore:ltsc2019>
# Set environment variables if needed
ENV VAR_NAME value
# Install Python and Prefect
# Ensure that this matches the correct path and Python version
RUN powershell -Command `
Invoke-WebRequest -Uri <https://www.python.org/ftp/python/3.9.7/python-3.9.7-amd64.exe> -OutFile python-3.9.7-amd64.exe; `
Start-Process python-3.9.7-amd64.exe -ArgumentList '/quiet InstallAllUsers=1 PrependPath=1' -NoNewWindow -Wait; `
Remove-Item -Force python-3.9.7-amd64.exe; `
pip install --upgrade pip; `
pip install prefect
# Copy your flow and other necessary files
COPY . /app
# Set the working directory
WORKDIR /app
# Copy the entrypoint script
COPY entrypoint.ps1 .
# Set the entrypoint to the PowerShell script
ENTRYPOINT ["powershell.exe", "C:\\app\\entrypoint.ps1"]
3. Build and Push Your Docker Image
Build your Docker image and push it to your Azure Container Registry (ACR).
bash
docker build -t <http://my-acr.azurecr.io/prefect-gams-windows:latest|my-acr.azurecr.io/prefect-gams-windows:latest> .
docker push <http://my-acr.azurecr.io/prefect-gams-windows:latest|my-acr.azurecr.io/prefect-gams-windows:latest>
4. Create or Update the Azure Container Instance Block
Specify your new Docker image and ensure that all settings point to the correct entry point script.
#### Example Python Configuration
python
from prefect_azure.container_instance import AzureContainerInstanceJob, AzureContainerInstanceCredentials
# Create or load Azure credentials block
azure_credentials_block = AzureContainerInstanceCredentials(
resource_group_name="myResourceGroup",
subscription_id="my_subscription_id",
tenant_id="my_tenant_id",
client_id="my_client_id",
client_secret="my_client_secret"
)
azure_credentials_block.save("my-azure-credentials")
# Create Azure Container Instance Job with the specified region and Windows OS
azure_container_instance_job = AzureContainerInstanceJob(
aci_credentials=AzureContainerInstanceCredentials.load("my-azure-credentials"),
region="eastus", # Specify the Azure region
additional_config={"osType": "Windows"},
container_resource_requests={"cpu": 1.0, "memory": 1.5},
container_name="mycontainer",
image="<http://my-acr.azurecr.io/prefect-gams-windows:latest|my-acr.azurecr.io/prefect-gams-windows:latest>"
)
azure_container_instance_job.save("my-azure-aci-job")
5. Deploy the Flow and Verify
Deploy the flow using the Prefect CLI and verify that the container starts correctly.Marvin
06/12/2024, 2:10 PMAlireza
06/12/2024, 2:51 PMMarvin
06/12/2024, 2:52 PMprefect worker
instead of prefect agent
.
Here's how you can update your entrypoint to align with the push work pool using a worker:
### Step-by-Step Update for Windows Container
1. Create an Entry Point Script for Windows
Create a PowerShell script that will start the Prefect worker. This script will also include the necessary environment setup if any.
#### Example PowerShell Script (entrypoint.ps1
)
powershell
# entrypoint.ps1
# Activate environment if using a virtualenv or conda, e.g.:
# & "C:\path\to\venv\Scripts\Activate.ps1"
# Ensure Prefect is installed and available
pip install prefect
# Start the Prefect worker for the specified work pool
prefect worker start -n "my-worker-name" -p "my-push-work-pool"
2. Update the Dockerfile for Windows
Modify your Dockerfile to copy the entrypoint script and set it as the entry point.
#### Example Dockerfile
Dockerfile
# Use a base Windows image
FROM <http://mcr.microsoft.com/windows/servercore:ltsc2019|mcr.microsoft.com/windows/servercore:ltsc2019>
# Set environment variables if needed
ENV VAR_NAME value
# Install Python and Prefect
# Ensure this matches the correct path and Python version
RUN powershell -Command `
Invoke-WebRequest -Uri <https://www.python.org/ftp/python/3.9.7/python-3.9.7-amd64.exe> -OutFile python-3.9.7-amd64.exe; `
Start-Process python-3.9.7-amd64.exe -ArgumentList '/quiet InstallAllUsers=1 PrependPath=1' -NoNewWindow -Wait; `
Remove-Item -Force python-3.9.7-amd64.exe; `
pip install --upgrade pip; `
pip install prefect
# Copy your flow and other necessary files
COPY . /app
# Set the working directory
WORKDIR /app
# Copy the entrypoint script
COPY entrypoint.ps1 .
# Set the entrypoint to the PowerShell script
ENTRYPOINT ["powershell.exe", "C:\\app\\entrypoint.ps1"]
3. Build and Push Your Docker Image
Build your Docker image and push it to your Azure Container Registry (ACR).
bash
docker build -t <http://my-acr.azurecr.io/prefect-gams-windows:latest|my-acr.azurecr.io/prefect-gams-windows:latest> .
docker push <http://my-acr.azurecr.io/prefect-gams-windows:latest|my-acr.azurecr.io/prefect-gams-windows:latest>
4. Create or Update the Azure Container Instance Block
Update the AzureContainerInstanceJob
block to use the Windows container.
#### Example Python Configuration
python
from prefect_azure.container_instance import AzureContainerInstanceJob, AzureContainerInstanceCredentials
# Create or load Azure credentials block
azure_credentials_block = AzureContainerInstanceCredentials(
resource_group_name="myResourceGroup",
subscription_id="my_subscription_id",
tenant_id="my_tenant_id",
client_id="my_client_id",
client_secret="my_client_secret"
)
azure_credentials_block.save("my-azure-credentials")
# Create Azure Container Instance Job with the specified region and Windows OS
azure_container_instance_job = AzureContainerInstanceJob(
aci_credentials=AzureContainerInstanceCredentials.load("my-azure-credentials"),
region="eastus", # Specify the Azure region
additional_config={"osType": "Windows"},
container_resource_requests={"cpu": 1.0, "memory": 1.5},
container_name="mycontainer",
image="<http://my-acr.azurecr.io/prefect-gams-windows:latest|my-acr.azurecr.io/prefect-gams-windows:latest>"
)
azure_container_instance_job.save("my-azure-aci-job")
5. Deploy the Flow and Verify
Deploy your flow using the Prefect CLI and verify that the container starts correctly with your Prefect worker.
### Example Deployment Configuration
Ensure your deployment script references the updated block:
python
from prefect.deployments import Deployment
from my_flow import my_flow_function # Replace with your actual flow import
deployment = Deployment.build_from_flow(
flow=my_flow_function,
name="my-flow-deployment",
infrastructure=AzureContainerInstanceJob.load("my-azure-aci-job")
)
deployment.apply()
Marvin
06/12/2024, 2:52 PMAlireza
06/12/2024, 3:15 PMMarvin
06/12/2024, 3:16 PMentrypoint.ps1
)
powershell
# entrypoint.ps1
# Set up the environment if needed
# Activate environment if using a virtualenv or conda, e.g.:
# & "C:\path\to\venv\Scripts\Activate.ps1"
# Ensure Prefect is installed and available
pip install prefect
# This script might include steps to initialize or start specific commands
# since push work pools handle execution without explicit worker commands.
2. Update the Dockerfile for Windows
Modify the Dockerfile to accommodate the entry point script.
#### Example Dockerfile
Dockerfile
# Use a base Windows image
FROM <http://mcr.microsoft.com/windows/servercore:ltsc2019|mcr.microsoft.com/windows/servercore:ltsc2019>
# Set environment variables if needed
ENV VAR_NAME value
# Install Python and Prefect
# Ensure this matches the correct path and Python version
RUN powershell -Command `
Invoke-WebRequest -Uri <https://www.python.org/ftp/python/3.9.7/python-3.9.7-amd64.exe> -OutFile python-3.9.7-amd64.exe; `
Start-Process python-3.9.7-amd64.exe -ArgumentList '/quiet InstallAllUsers=1 PrependPath=1' -NoNewWindow -Wait; `
Remove-Item -Force python-3.9.7-amd64.exe; `
pip install --upgrade pip; `
pip install prefect
# Copy your flow and other necessary files
COPY . /app
# Set the working directory
WORKDIR /app
# Copy the entrypoint script
COPY entrypoint.ps1 .
# Set the entrypoint to the PowerShell script
ENTRYPOINT ["powershell.exe", "C:\\app\\entrypoint.ps1"]
3. Build and Push Your Docker Image
Build and push your updated Docker image to your Azure Container Registry (ACR).
bash
docker build -t <http://my-acr.azurecr.io/prefect-gams-windows:latest|my-acr.azurecr.io/prefect-gams-windows:latest> .
docker push <http://my-acr.azurecr.io/prefect-gams-windows:latest|my-acr.azurecr.io/prefect-gams-windows:latest>
4. Create or Update the Azure Container Instance Block
Configure and save the block so it uses the Windows container image.
python
from prefect_azure.container_instance import AzureContainerInstanceJob, AzureContainerInstanceCredentials
# Create or load Azure credentials block
azure_credentials_block = AzureContainerInstanceCredentials(
resource_group_name="myResourceGroup",
subscription_id="my_subscription_id",
tenant_id="my_tenant_id",
client_id="my_client_id",
client_secret="my_client_secret"
)
azure_credentials_block.save("my-azure-credentials")
# Create Azure Container Instance Job with the specified region and Windows OS
azure_container_instance_job = AzureContainerInstanceJob(
aci_credentials=AzureContainerInstanceCredentials.load("my-azure-credentials"),
region="eastus", # Specify the Azure region
additional_config={"osType": "Windows"},
container_resource_requests={"cpu": 1.0, "memory": 1.5},
container_name="mycontainer",
image="<http://my-acr.azurecr.io/prefect-gams-windows:latest|my-acr.azurecr.io/prefect-gams-windows:latest>"
)
azure_container_instance_job.save("my-azure-aci-job")
5. Deploy the Flow
Deploy the flow using your push work pool configuration, ensuring that it references the setup block.
### Example Deployment Configuration
Ensure your deployment script references the updated block:
python
from prefect.deployments import Deployment
from my_flow import my_flow_function # Replace with your actual flow import
deployment = Deployment.build_from_flow(
flow=my_flow_function,
name="my-flow-deployment",
infrastructure=AzureContainerInstanceJob.load("my-azure-aci-job")
)
deployment.apply()
### SummaryMarvin
06/12/2024, 3:16 PM