Philipp
06/11/2024, 1:13 PMMarvin
06/11/2024, 1:13 PMModuleNotFoundError
when deploying flows in a Docker container, despite having the PYTHONPATH
set correctly. Here's a summary of the problem and some steps you can take to resolve it:
1. Verify Source Path in Docker Image: Ensure the path containing your modules is included in the Docker image and that PYTHONPATH
is set correctly within the Docker container context.
2. Use requirements.txt
: While building your Docker image, make sure all necessary dependencies are listed in your requirements.txt
and are installed during the Docker build process.
3. Consolidate Imports: Double-check your import statements to ensure you're using relative imports if needed. This is especially important within packages.
4. Testing Docker Container: Manually run a simple Python script within the Docker container to verify that modules can be imported properly. This isolates whether the issue is with Prefect or your Docker setup.
5. Docker and Prefect Block Configuration: Ensure that Prefect is configured correctly to respect your Docker image’s settings. Prefect's DockerBlock
might be useful here.
For deeper insight, check the following resources and examples:
- Custom Docker Image for Prefect Flows
- A GitHub issue discussing a similar problem: ModuleNotFoundError in deployed flows
If these steps do not resolve your issue, consider running your modules as a package or using absolute imports for better results in Docker.
Help me, help you.Philipp
06/11/2024, 1:41 PMMarvin
06/11/2024, 1:42 PMModuleNotFoundError
for the module name __prefect_loader__.config
.
Here are potential workarounds and suggestions based on the gathered information:
### Workarounds:
1. Absolute Imports:
Use absolute imports instead of relative imports. This approach avoids issues related to how Prefect packages and loads modules.
python
# In submodule.py
from prefect import task
@task
def repeatable_task():
from prefect import get_run_logger
logger = get_run_logger()
<http://logger.info|logger.info>('Doing some task now')
python
# In workflow.py
from prefect import flow
from my_package.submodule import repeatable_task
@flow
def top_level_flow():
repeatable_task()
2. Local package installation:
Convert your project directory into a package and install it in the Docker image using pip
. Ensure your project is structured as a package with an __init__.py
file.
Dockerfile
# Dockerfile
COPY . /app
WORKDIR /app
RUN pip install -e .
bash
# In deployment.py or via CLI
pip install -e .
### Documentation and Issues:
- Style Guide for Imports: Prefect suggests a structured approach to imports that avoids relative imports for clarity and reliability.
- Prefect Import Style Guide
- Related GitHub Issues:
- ModuleNotFoundError with `__prefect_loader__`
- Local relative imports do not work in flows/tasks
- No module named `__prefect_loader__` when using `load_flow_from_script`
Refer to these resources to adjust your code structure and deployment strategy to avoid the import errors.
Let's hope this helps your modules find their way around!Philipp
06/11/2024, 2:24 PMMarvin
06/11/2024, 2:24 PMworkflow.py
, submodule.py
, and __init__.py
files to ensure proper module recognition. This structure follows the absolute import strategy.
### Directory Structure
my_project/
├── my_package/
│ ├── __init__.py
│ ├── submodule.py
│ └── workflow.py
├── requirements.txt
└── Dockerfile
### my_package/__init__.py
This file can be empty or used to initialize your package.
python
# my_package/__init__.py
# This file can be empty
### my_package/submodule.py
Define your task here.
python
# my_package/submodule.py
from prefect import task
@task
def repeatable_task():
from prefect import get_run_logger
logger = get_run_logger()
<http://logger.info|logger.info>('Doing some task now')
### my_package/workflow.py
Import and use your tasks here.
python
# my_package/workflow.py
from prefect import flow
from my_package.submodule import repeatable_task # Absolute import
@flow
def top_level_flow():
repeatable_task()
if __name__ == '__main__':
top_level_flow()
### Dockerfile
Build your Docker image to include the package.
Dockerfile
# Dockerfile
FROM python:3.8-slim
WORKDIR /app
# Install Prefect
RUN pip install prefect
# Copy the whole project to the container
COPY . /app
# Install the package as an editable module
RUN pip install -e .
# Set the PYTHONPATH (if needed)
ENV PYTHONPATH "${PYTHONPATH}:/app"
CMD ["python", "my_package/workflow.py"]
### requirements.txt
List your dependencies here.
plaintext
prefect
### Steps to Deploy
1. Build Docker Image:
sh
docker build -t my_prefect_image .
2. Run Docker Container:
sh
docker run my_prefect_image
3. Deploy with Prefect:
Ensure you follow relevant documentation to deploy using Prefect's CLI or Python API, passing the correct flow and deployment parameters.
This structure ensures that your package my_package
is recognized correctly, even when using absolute imports within a Docker container.Philipp
06/11/2024, 2:35 PMMarvin
06/11/2024, 2:36 PMmy_repo/
├── my_package/
│ ├── __init__.py
│ ├── submodule.py
│ └── workflow.py
├── requirements.txt
└── Dockerfile
### Deployment Steps
1. Create GitHub Repository:
Push your project structure to a GitHub repository, for example, <https://github.com/yourusername/my_repo>
.
2. Define Workflow and Tasks:
Use the same workflow.py
and submodule.py
as shown earlier.
3. Dockerfile:
Ensure your Dockerfile is set up to copy and install your package.
Dockerfile
# Dockerfile
FROM python:3.8-slim
WORKDIR /app
# Install Prefect
RUN pip install prefect
# Clone the repository
RUN apt-get update && apt-get install -y git
RUN git clone <https://github.com/yourusername/my_repo.git> /app
# Install the package as an editable module
RUN pip install -e /app
# Set the PYTHONPATH (if needed)
ENV PYTHONPATH "${PYTHONPATH}:/app"
CMD ["python", "my_package/workflow.py"]
4. Push Changes to GitHub:
Ensure all your files, including the Dockerfile
, are pushed to the repository.
5. Create Prefect Deployment:
Use the Prefect CLI or Python API to create a deployment from the source. Example using Prefect CLI:
sh
prefect deployment build my_package/workflow.py:top_level_flow -n my-flow -q default -sb github/yourusername/my_repo -ib docker-container/your-docker-block
6. Register Deployment:
Apply the deployment to make it available in Prefect Cloud.
sh
prefect deployment apply my-flow-deployment.yaml
7. Run the Flow:
Trigger the flow run from the Prefect UI or using the CLI:
sh
prefect deployment run my-flow/top_level_flow
### Example of Deployment YAML
When you build your deployment, it will generate a YAML file, which could look something like this:
yaml
name: my-flow
work_pool:
name: default
flow_name: top_level_flow
work_queue_name: default
flow_location: /app/my_package/workflow.py
storage:
module: "prefect.filesystems"
class: "GitHub"
settings:
repository: "yourusername/my_repo"
infrastructure:
type: "docker"
image: "your-docker-registry/your-image:latest"
### Using Prefect API for Deployment
Alternatively, here is an example using the Prefect Python API:
python
from prefect.deployments import Deployment
from prefect.filesystems import GitHub
from prefect.infrastructure.docker import DockerContainer
from my_package.workflow import top_level_flow
# Define storage
github_block = GitHub(repository="<https://github.com/yourusername/my_repo>")
# Define infrastructure
docker_container_block = DockerContainer(
image="your-docker-registry/your-image:latest"
)
# Create deployment
deployment = Deployment.build_from_flow(
flow=top_level_flow,
name="my-flow",
storage=github_block,
infra_overrides=docker_container_block,
work_queue_name="default"
)
# Apply the deployment
deployment.apply()
Ensure you replace yourusername
, my_repo
, and other placeholders with your actual GitHub username, repository name, and Docker registry details. This should help you set up and deploy your Prefect flow from a GitHub repository.Philipp
06/11/2024, 3:32 PMPhilipp
06/11/2024, 5:34 PMMarvin
06/11/2024, 5:35 PMmy_package
directory:
my_repo/
├── src/
│ └── my_package/
│ ├── __init__.py
│ ├── submodule.py
│ └── workflow.py
├── requirements.txt
└── Dockerfile
### Configuration
1. Update prefect.yaml
:
Make sure your prefect.yaml
file is correctly using the set_working_directory
step to change the working directory to /app/src
.
yaml
name: my-prefect-project
prefect-version: 2.x.y
# Deployments section for providing configurations
deployments:
- name: my-deployment
entrypoint: my_package/workflow.py:top_level_flow
work_pool_name: my-work-pool
job_variables:
image: my-docker-image:latest
storage:
module: prefect.filesystems
class: GitHub
settings:
repository: yourusername/my_repo
pull_steps:
- prefect.deployments.steps.set_working_directory:
directory: /app/src # Ensure this points to the correct directory inside the Docker container
2. Update Dockerfile:
Ensure the Dockerfile copies the repository to the correct directory and installs the package from there.
Dockerfile
# Dockerfile
FROM python:3.8-slim
WORKDIR /app
RUN apt-get update && apt-get install -y git
# Install Prefect
RUN pip install prefect
# Clone the repository
RUN git clone <https://github.com/yourusername/my_repo.git> /app
# Change to the directory that contains your package
WORKDIR /app/src
# Install the package as an editable module
RUN pip install -e .
CMD ["python", "my_package/workflow.py"]
### Deployment Using CLI
After configuring the `prefect.yaml`:
sh
prefect deployment build src/my_package/workflow.py:top_level_flow -n my-deployment -q default -sb github/yourusername/my_repo -ib docker-container/my-docker-block
prefect deployment apply my-deployment-deployment.yaml
### Example Project for Workflow and Tasks
The code remains the same as before, except ensure that your imports correctly reference the package location.
#### src/my_package/__init__.py
python
# src/my_package/__init__.py
# This file can be empty
#### src/my_package/submodule.py
python
# src/my_package/submodule.py
from prefect import task
@task
def repeatable_task():
from prefect import get_run_logger
logger = get_run_logger()
<http://logger.info|logger.info>('Doing some task now')
#### src/my_package/workflow.py
python
# src/my_package/workflow.py
from prefect import flow
from my_package.submodule import repeatable_task # Absolute import
@flow
def top_level_flow():
repeatable_task()
if __name__ == '__main__':
top_level_flow()
### Running the Deployment
1. Build Docker Image:
sh
docker build -t my_prefect_image .
2. Push Docker Image to your Docker registry if needed.
3. Run the Flows:
Trigger or schedule the flow runs from either the Prefect UI or CLI.
By setting the working directory explicitly in both the Dockerfile and the Prefect deployment configuration, you can ensure that Prefect runs the flow in the correct directory, even if your package is nested within the repository.Philipp
06/12/2024, 9:15 AMMarvin
06/12/2024, 9:15 AMset_working_directory
step in Prefect is used to set the directory where the repository is pulled into, not necessarily the directory from which the flows are executed. To properly set the working directory for the execution of flows, you would typically need to adjust your infrastructure and deployment settings.
Given this clarification, here’s how you can explicitly set the working directory for your flow execution:
### Directory Structure
my_repo/
├── src/
│ └── my_package/
│ ├── __init__.py
│ ├── submodule.py
│ └── workflow.py
├── requirements.txt
└── Dockerfile
### Docker Configuration
Update your Dockerfile to ensure your working directory is set appropriately within the container:
Dockerfile
# Dockerfile
FROM python:3.8-slim
# Set the working directory to /app/src
WORKDIR /app/src
RUN apt-get update && apt-get install -y git
# Install Prefect
RUN pip install prefect
# Clone the repository to /app
RUN git clone <https://github.com/yourusername/my_repo.git> /app
# Ensure we are in the /app/src directory
WORKDIR /app/src
# Install the package as an editable module
RUN pip install -e .
# Set the command to run the workflow
CMD ["python", "my_package/workflow.py"]
### Prefect Deployment Configuration
In your prefect.yaml
, you’ll not only configure the storage but also ensure that the entrypoint is correctly specified.
yaml
name: my-prefect-project
prefect-version: 2.x.y
deployments:
- name: my-deployment
entrypoint: src/my_package/workflow.py:top_level_flow
work_pool_name: my-work-pool
job_variables:
image: my-docker-image:latest
storage:
module: prefect.filesystems
class: GitHub
settings:
repository: yourusername/my_repo
pull_steps:
- prefect.deployments.steps.set_working_directory:
directory: /app/src
### Adjusting Deployment Using CLI
When deploying from source using the CLI, make sure to set the appropriate paths and configurations:
sh
# Building the deployment
prefect deployment build src/my_package/workflow.py:top_level_flow -n my-deployment -q default -sb github/yourusername/my_repo -ib docker-container/my-docker-block
# Apply the deployment
prefect deployment apply my-deployment-deployment.yaml
### Example Flow and Tasks
Here's the code structure again for completeness:
#### src/my_package/__init__.py
python
# src/my_package/__init__.py
# This file can be empty
#### src/my_package/submodule.py
python
# src/my_package/submodule.py
from prefect import task
@task
def repeatable_task():
from prefect import get_run_logger
logger = get_run_logger()
<http://logger.info|logger.info>('Doing some task now')
#### src/my_package/workflow.py
python
# src/my_package/workflow.py
from prefect import flow
from my_package.submodule import repeatable_task # Absolute import
@flow
def top_level_flow():
repeatable_task()
if __name__ == '__main__':
top_level_flow()
### Running the Deployment
1. Build and Push Docker Image:
sh
docker build -t my_prefect_image .
docker push my_prefect_image
2. Deploy the Flow:
Deploying the flow using the CLI commands provided above ensures that the flow entrypoint and job variables are properly configured.
3. Run the Flow:
Trigger the flow run from the Prefect UI or CLI:
sh
prefect deployment run my-prefect-project/my-deployment
This setup ensures that when your flow runs, it runs within the /app/src
directory, where your code and dependencies are appropriately installed and available.