Tal
05/30/2024, 4:37 AMMarvin
05/30/2024, 4:37 AMwait_for
to Specify Task Dependencies
You can use the wait_for
parameter to specify that a task should wait for one or more other tasks to complete before starting.
Here's an example of how to structure your flow:
python
from prefect import flow, task
@task
def analyze_step_1(input_data):
# Perform analysis step 1
return result_1
@task
def analyze_step_2(result_1):
# Perform analysis step 2, relies on result_1 from analyze_step_1
return result_2
@task
def analyze_step_3(result_2):
# Perform analysis step 3, relies on result_2 from analyze_step_2
return result_3
@flow(log_prints=True)
def analysis_flow(zip_file):
# Initial task to extract data from the zip file
extracted_data = extract_data_from_zip(zip_file)
# Submit and specify dependencies using wait_for
result_1 = analyze_step_1.submit(extracted_data)
result_2 = analyze_step_2.submit(result_1, wait_for=[result_1])
result_3 = analyze_step_3.submit(result_2, wait_for=[result_2])
# You can add more steps as needed
return result_3
@task
def extract_data_from_zip(zip_file):
# Placeholder function for extracting data from zip
extracted_data = {} # Replace with actual extraction logic
return extracted_data
if __name__ == "__main__":
analysis_flow("path/to/zipfile.zip")
### Example Highlights:
1. Use @task
Decorator: Decorate each function that represents a step in your analysis pipeline.
2. Specify Dependencies with wait_for
: For tasks that depend on the results of other tasks, use the wait_for
parameter to define these dependencies.
3. Flow Context: Use the @flow
decorator to define the main flow which coordinates the execution of tasks.
### Resources:
- Specifying Upstream Dependencies
- Prefect Code Example: Basic Task Flow
By organizing your tasks and defining dependencies clearly, you'll ensure the analysis proceeds in the correct order and efficiently utilizes resources.Tal
05/30/2024, 4:39 AMMarvin
05/30/2024, 4:39 AMpython
from prefect import flow, task
@task
def extract_data_from_zip(zip_file):
# Placeholder function for extracting data from zip
extracted_data = {} # Replace with actual extraction logic
return extracted_data
@task
def analyze_step_1(input_data):
# Perform analysis step 1
return result_1
@task
def analyze_step_2(result_1):
# Perform analysis step 2, relies on result_1 from analyze_step_1
return result_2
@task
def analyze_step_3(result_2):
# Perform analysis step 3, relies on result_2 from analyze_step_2
return result_3
@flow(log_prints=True)
def analysis_flow(zip_file):
# Extract data from zip file
extracted_data = extract_data_from_zip(zip_file)
# Chain tasks together using automatic upstream dependencies
result_1 = analyze_step_1(extracted_data)
result_2 = analyze_step_2(result_1)
result_3 = analyze_step_3(result_2)
return result_3
if __name__ == "__main__":
analysis_flow("path/to/zipfile.zip")
### Explanation:
1. Automatic Upstream Dependencies: When a result from a task is used as input for another task, Prefect automatically recognizes the task that produced that result as an upstream dependency.
2. Flow Context: The @flow
decorator defines the main workflow. It manages the execution of tasks and ensures they are run in the correct order based on their inputs and outputs.
### Resources:
- Specifying Upstream Dependencies
This approach allows each task to contain the information it requires, with Prefect handling the dependencies automatically. This ensures that your tasks are executed in the right order without explicitly having to sequence them.Tal
05/30/2024, 4:43 AMMarvin
05/30/2024, 4:43 AMpython
from prefect import flow, task
@task
def extract_data_from_zip(zip_file):
# Placeholder function for extracting data from zip
extracted_data = {} # Replace with actual extraction logic
return extracted_data
@task
def analyze_step_1(input_data):
# Perform analysis step 1
return {'result': 'result_1', 'next': analyze_step_2}
@task
def analyze_step_2(input_data):
# Perform analysis step 2
return {'result': 'result_2', 'next': analyze_step_3}
@task
def analyze_step_3(input_data):
# Perform analysis step 3
return {'result': 'result_3', 'next': None}
analyzers = [analyze_step_1, analyze_step_2, analyze_step_3]
@flow(log_prints=True)
def analysis_flow(zip_file):
# Extract data from zip file
extracted_data = extract_data_from_zip(zip_file)
# Start the first analyzer
current_task_result = analyzers[0].submit(extracted_data)
# Loop through the analyzers to chain them together
for analyzer in analyzers[1:]:
current_task_result = analyzer.submit(current_task_result) # Automatically sets upstream dependency
if __name__ == "__main__":
analysis_flow("path/to/zipfile.zip")
### Explanation:
1. Task Results with Next Steps: Each task returns a dictionary containing its result and the next analyzer to run.
2. Loop Through Analyzers: The main flow iterates through the list of analyzers and chains them together by submitting tasks consecutively.
3. Automatic Upstream Dependencies: By passing the result of each task to the next, Prefect automatically manages the upstream dependencies.
### Resources:
- Specifying Upstream Dependencies
- Prefect Concepts - Deployments and Scheduling
This dynamic approach allows the flow to determine task order and dependencies at runtime based on the sequence of analyzers, providing a flexible and automated way to manage task execution order.Tal
05/30/2024, 4:46 AMMarvin
05/30/2024, 4:46 AMpython
from prefect import flow, task
from collections import defaultdict, deque
@task
def extract_data_from_zip(zip_file):
# Placeholder function for extracting data from zip
extracted_data = {} # Replace with actual extraction logic
return extracted_data
@task
def analyze_step_1(input_data):
# Perform analysis step 1
return "result_1"
@task
def analyze_step_2(input_data):
# Perform analysis step 2
return "result_2"
@task
def analyze_step_3(input_data):
# Perform analysis step 3
return "result_3"
@task
def analyze_step_4(result_1, result_2):
# Perform analysis step 4, depends on result_1 and result_2
return "result_4"
# Define all analyzers
analyzers = {
"step_1": analyze_step_1,
"step_2": analyze_step_2,
"step_3": analyze_step_3,
"step_4": analyze_step_4,
}
# Define dependencies
dependencies = {
"step_1": [],
"step_2": ["step_1"],
"step_3": ["step_1"],
"step_4": ["step_2", "step_3"],
}
# Topological sort function to resolve dependencies
def topological_sort(dependencies):
graph = defaultdict(list)
in_degree = defaultdict(int)
# Build graph
for node, deps in dependencies.items():
for dep in deps:
graph[dep].append(node)
in_degree[node] = in_degree.get(node, 0)
for dep in deps:
in_degree[node] += 1
# Kahn's algorithm
queue = deque([node for node in dependencies if in_degree[node] == 0])
sorted_list = []
while queue:
node = queue.popleft()
sorted_list.append(node)
for neighbor in graph[node]:
in_degree[neighbor] -= 1
if in_degree[neighbor] == 0:
queue.append(neighbor)
if len(sorted_list) < len(dependencies):
raise ValueError("Cycle detected in dependencies")
return sorted_list
@flow(log_prints=True)
def analysis_flow(zip_file):
extracted_data = extract_data_from_zip(zip_file)
task_results = {"extracted_data": extracted_data}
sorted_analyzers = topological_sort(dependencies)
for analyzer in sorted_analyzers:
if analyzer == "step_1":
task_results["step_1"] = analyzers<task_results["extracted_data"]|analyzer>
elif analyzer == "step_2":
task_results["step_2"] = analyzers<task_results["step_1"]|analyzer>
elif analyzer == "step_3":
task_results["step_3"] = analyzers<task_results["step_1"]|analyzer>
elif analyzer == "step_4":
task_results["step_4"] = analyzers<task_results["step_1"], task_results["step_2"]|analyzer>
return task_results
if __name__ == "__main__":
analysis_flow("path/to/zipfile.zip")
### Explanation:
1. Dependencies Mapping: The dependencies
dictionary defines which analyzers depend on which others.
2. Topological Sort: The topological_sort
function resolves the order of execution by sorting the tasks based on dependencies, preventing circular dependencies.
3. Dynamic Execution: The analysis_flow
function dynamically submits tasks in the correct order based on the resolved dependencies.
### Resources:
- Specifying Upstream Dependencies
- Prefect Concepts - Deployments and SchedulingMarvin
05/30/2024, 4:46 AMTal
05/30/2024, 4:48 AMMarvin
05/30/2024, 4:48 AMpython
from prefect import flow, task
from collections import defaultdict, deque
@task
def extract_data_from_zip(zip_file):
# Placeholder function for extracting data from zip
extracted_data = {} # Replace with actual extraction logic
return extracted_data
@task
def analyze_step_1(input_data):
# Perform analysis step 1
return "result_1"
@task
def analyze_step_2(input_data):
# Perform analysis step 2
return "result_2"
@task
def analyze_step_3(input_data):
# Perform analysis step 3
return "result_3"
@task
def analyze_step_4(result_1, result_2):
# Perform analysis step 4, depends on result_1 and result_2
return "result_4"
# Define all analyzers and their dependency keys
analyzers = {
"step_1": (analyze_step_1, ["extracted_data"]),
"step_2": (analyze_step_2, ["step_1"]),
"step_3": (analyze_step_3, ["step_1"]),
"step_4": (analyze_step_4, ["step_2", "step_3"]),
}
# Define dependencies
dependencies = {
"step_1": [],
"step_2": ["step_1"],
"step_3": ["step_1"],
"step_4": ["step_2", "step_3"],
}
# Topological sort function to resolve dependencies
def topological_sort(dependencies):
graph = defaultdict(list)
in_degree = defaultdict(int)
# Build graph
for node, deps in dependencies.items():
for dep in deps:
graph[dep].append(node)
in_degree[node] = in_degree.get(node, 0)
for dep in deps:
in_degree[node] += 1
# Kahn's algorithm
queue = deque([node for node in dependencies if in_degree[node] == 0])
sorted_list = []
while queue:
node = queue.popleft()
sorted_list.append(node)
for neighbor in graph[node]:
in_degree[neighbor] -= 1
if in_degree[neighbor] == 0:
queue.append(neighbor)
if len(sorted_list) < len(dependencies):
raise ValueError("Cycle detected in dependencies")
return sorted_list
@flow(log_prints=True)
def analysis_flow(zip_file):
extracted_data = extract_data_from_zip(zip_file)
task_results = {"extracted_data": extracted_data}
sorted_analyzers = topological_sort(dependencies)
for analyzer in sorted_analyzers:
analyzer_task, dependency_keys = analyzers[analyzer]
dependencies_results = [task_results[key] for key in dependency_keys]
task_results[analyzer] = analyzer_task.submit(*dependencies_results)
return task_results
if __name__ == "__main__":
analysis_flow("path/to/zipfile.zip")
### Explanation:
1. Analyzer Dictionary: Each analyzer is stored in a dictionary along with the keys of its dependencies.
2. Topological Sorting: Perform topological sort to ensure analyzers are executed in the order respecting their dependencies.
3. Dynamic Execution: Loop through the sorted analyzers, extracting the required dependency results dynamically and submitting each task in the correct order.
### Resources:
- Specifying Upstream Dependencies
- Prefect Concepts - Deployments and Scheduling
This approach generalizes the execution flow, making it fully dynamic. It resolves dependencies at runtime and automatically submits tasks in the correct order based on their specified dependencies.Tal
05/30/2024, 5:29 AMMarvin
05/30/2024, 5:29 AMpython
from prefect import flow, task
from collections import defaultdict, deque
@task
def extract_data_from_zip(zip_file):
# Placeholder function for extracting data from zip
extracted_data = {} # Replace with actual extraction logic
return extracted_data
@task
def analyze_step_1(input_data):
# Perform analysis step 1
return "result_1"
analyze_step_1.dependencies = ["extract_data_from_zip"]
@task
def analyze_step_2(result_1):
# Perform analysis step 2
return "result_2"
analyze_step_2.dependencies = ["analyze_step_1"]
@task
def analyze_step_3(result_1):
# Perform analysis step 3
return "result_3"
analyze_step_3.dependencies = ["analyze_step_1"]
@task
def analyze_step_4(result_2, result_3):
# Perform analysis step 4, depends on result_1 and result_2
return "result_4"
analyze_step_4.dependencies = ["analyze_step_2", "analyze_step_3"]
# Register all tasks
analyzers = [extract_data_from_zip, analyze_step_1, analyze_step_2, analyze_step_3, analyze_step_4]
# Extract dependencies directly from task metadata
def resolve_dependencies(tasks):
dependencies = {task.name: getattr(task, 'dependencies', []) for task in tasks}
return dependencies
# Topological sort to resolve dependencies
def topological_sort(dependencies):
graph = defaultdict(list)
in_degree = defaultdict(int)
# Build graph
for node, deps in dependencies.items():
for dep in deps:
graph[dep].append(node)
in_degree[node] = in_degree.get(node, 0)
for dep in deps:
in_degree[node] += 1
# Kahn's algorithm
queue = deque([node for node in dependencies if in_degree[node] == 0])
sorted_list = []
while queue:
node = queue.popleft()
sorted_list.append(node)
for neighbor in graph[node]:
in_degree[neighbor] -= 1
if in_degree[neighbor] == 0:
queue.append(neighbor)
if len(sorted_list) < len(dependencies):
raise ValueError("Cycle detected in dependencies")
return sorted_list
@flow(log_prints=True)
def analysis_flow(zip_file):
task_results = {"extract_data_from_zip": extract_data_from_zip.submit(zip_file)}
dependencies = resolve_dependencies(analyzers)
sorted_analyzers = topological_sort(dependencies)
for analyzer_name in sorted_analyzers:
if analyzer_name == "extract_data_from_zip":
continue
analyzer_task = next(task for task in analyzers if task.name == analyzer_name)
dependency_results = [task_results[dep] for dep in analyzer_task.dependencies]
task_results[analyzer_name] = analyzer_task.submit(*dependency_results)
return task_results
if __name__ == "__main__":
analysis_flow("path/to/zipfile.zip")
### How It Works:
1. Task Metadata: Each task defines its dependencies using a custom attribute dependencies
.
2. Dependency Resolution: The resolve_dependencies
function extracts the dependencies from the tasks' metadata.
3. Topological Sorting: The topological_sort
function ensures tasks are executed in the correct order.
4. Dynamic Execution: The main analysis_flow
dynamically submits tasks based on the sorted order and their dependencies.
### Advantages:
- Self-contained Tasks: Dependencies are part of the tasks, making adding or modifying tasks easier.
- Modular and Maintainable: Task definitions and their dependencies are centralized within the task itself.
### Resources:Marvin
05/30/2024, 5:29 AM