MarcoM
02/13/2024, 2:40 PMMarvin
02/13/2024, 2:41 PM@task
decorator to specify the number of retries and retry delay.
4. Pass the Updated Parameter: When a retry occurs, make sure the updated parameter is being passed to the task.
Here's a simplified example in Python using Prefect code:
python
from prefect import Flow, task, Parameter
from prefect.engine.state import Failed, Retrying
@task(max_retries=3, retry_delay=timedelta(seconds=10))
def my_task(param):
# Some operation that may fail
pass
def my_state_handler(obj, old_state, new_state):
if isinstance(new_state, Failed):
param_value = obj.parameters.get('my_param', default_value)
# Modify the parameter before retrying
new_param_value = modify_parameter_logic(param_value)
obj.parameters['my_param'] = new_param_value
if isinstance(new_state, Retrying):
# Make sure to pass along the modified parameter
new_state.context.update(parameters=obj.parameters)
return new_state
with Flow("My Flow", state_handlers=[my_state_handler]) as flow:
my_param = Parameter("my_param", default=default_value)
my_task(my_param)
# Run the flow
flow.run()
In this code, modify_parameter_logic
would be your custom function to change the parameter based on your specific logic or conditions.
Keep in mind, the flow has to be written in such a way that it can accept the changed parameter and behave accordingly. You would need to handle the parameter change logic within your tasks as well. If the failure is unpredictable, it might be challenging to determine the correct parameter changes automatically.