<@ULVA73B9P> I'm currently working on configuring ...
# ask-marvin
l
@Marvin I'm currently working on configuring Prefect locally and aiming to have it run regularly with all deployments initiated and the server starting up automatically when the system boots. Could you provide guidance or steps on how to achieve this setup effectively?
m
To configure Prefect locally and ensure that it runs automatically on system startup, you can follow these steps: 1. Configuring a Prefect server instance locally: - Open your terminal session. - Run the command
prefect config set PREFECT_API_URL="<http://127.0.0.1:4200/api>"
to set the API URL to point to a Prefect server instance. - Note that if you are running Prefect inside a container, such as a Docker container, you must set the API server address as described above. - You can save the API server address in a Prefect profile so that whenever that profile is active, the API endpoint will be set to that address. 2. Running Prefect on system startup: - You can set up a Prefect worker as a systemd service on Linux systems. This allows the worker to start automatically when the system boots. - You would need to create a service file for Prefect and then enable it using
systemctl enable prefect-worker
to make sure it runs on boot. - To start the service, use
systemctl start prefect-worker
. For a detailed guide on how to set up a Prefect 2 worker as a systemd service on Linux and to understand the necessary configurations, check out this discussion on Prefect's Discourse. Keep in mind that the guide and steps mentioned above are platform-specific (Linux systems), and if you're using a different operating system, the steps to configure Prefect to start on system boot might be different. For comprehensive documentation and platform-specific instructions, always refer to the official Prefect documentation.
l
@Marvin I'm using Windows. Also I have a lot of scripts which need to be deployed on start up. How would be the best method for having them deploy?
m
For running Prefect and deploying flows on startup on a Windows machine, you may not find direct documentation because Windows does not use systemd, which is a system and service manager used in Linux. Since Windows has different mechanisms for handling services, here are general steps that you could follow: 1. Running Prefect Agent on System Startup on Windows: - One common way to run programs on startup in Windows is by using Task Scheduler, which allows you to create and manage common tasks that your computer will carry out automatically at the times you specify. - You can set up Task Scheduler to start the Prefect agent whenever your computer boots. To do this, you would create a new basic task, trigger it at startup, and then select the program/script to start (in this case, it would be your Prefect agent command). 2. Automating Deployment of Prefect Flows: - For deploying flows, you can use Prefect's CLI to register and run flows. You might want to create batch scripts that include the necessary Prefect CLI commands to register and start your flows. - These batch scripts can be run at logon or startup by adding a new task in Task Scheduler just as you would with the Prefect agent. Here are steps for creating a task in Task Scheduler for running a Prefect agent or deploying flows: - Open Task Scheduler and create a new task. - Set the trigger to "At system startup" or "At log on" depending on your requirements. - For the action, select "Start a program" and configure it to run your Prefect agent or your batch script that registers and starts your flows. - Finally, go through the options to ensure the task runs with the necessary privileges and settings, then save the task. Please note, these are general guidelines, and the specifics may vary based on your exact use case and Prefect setup. For the Prefect specific commands, you would refer to the Prefect documentation or use the CLI
--help
option to get the correct syntax for starting the agent and deploying flows. For comprehensive instructions on using Prefect and deploying flows on a Windows system, always refer to the official Prefect documentation. If necessary documentation is not available, you may find more help on forums like Stack Overflow or Prefect community channels.
l
@Marvin I have another question. I have deployed a flow and I want to print the script's original location and path
m
When a flow runs, its execution environment needs access to its code, but this code is not stored in the Prefect server database instance or Prefect Cloud. Assuming you are using Prefect 2.x, the way to get the original location and path of your deployed flow will depend on how you've chosen to store the flow code. If you deployed using local storage and are still using the local filesystem, you would have specified the flow script's path during the deployment process. Prefect workers will attempt to load your flow from the path you specified. Here is a general process that you might follow for deploying with local storage: - Run
prefect deploy
from the root of the directory containing your flow code. - Create a new deployment, selecting your flow code entry point and naming your deployment. - Select a process work pool. Upon completion of these steps, you should be shown the path that your flow code will be fetched from when it runs. For more details and other storage options such as Git-based storage (e.g., GitHub, GitLab, Bitbucket), you can refer to Prefect's documentation and run
$ prefect init
for more options for managing your flow's code: Storage Guide in Prefect Docs. To track such information explicitly or programmatically after deploying in Prefect Cloud, additional steps might be necessary as this workflow metadata is managed through the Prefect Cloud's user interface or through API interactions. If you require deeper assistance with Prefect Cloud, further documentation is available here: Prefect Cloud Quickstart. Let me know if you need further information or have specific storage settings you're using.
l
@Marvin what I want is to print the path from inside the code
m
To print the path of your deployed Prefect flow within the flow code, there isn't a built-in Prefect function that directly provides this feature. However, since the path from where the script runs can be determined by Python's standard library, you can obtain the script's directory within the flow code like this:
Copy code
python
import os

# Inside your flow or task
script_path = os.path.abspath(__file__)
print(f"The flow is running from: {script_path}")
This
__file__
attribute contains the path to the script where it is written, and
os.path.abspath
will resolve it to an absolute path. Please note that this will print the path where the flow script is currently located, which works as long as the location doesn't change after deployment. If it does or if you need to retrieve the path differently based on your deployment model (e.g., Docker, Kubernetes, etc.), you might have to implement custom logic to determine the flow's path at runtime. Also, keep in mind when using Docker or similar environments, the printed path will be the path inside the container, not on your local machine. Remember that in a cloud or server-based execution environment, this will give you the execution path on the server or execution environment, not the path where the flow was originally defined or deployed from. When the flow runs, logs like "Downloading flow code from storage at '/my_path'" indicate where the flow code is stored or being executed from as part of the run logs. This can be found in the Prefect UI under the logs for a particular flow run. Let me know if you need assistance with specific deployment models or further explanation on how to integrate this into your flow.
l
@Marvin I have deployed a script from a prefect project. I have the prefect.yml file and then I made some changes on the deploy from prefect's UI. How do I update that prefect.yml file to have those new changes.
m
It appears from the provided document excerpts that there isn't a direct mention of the process for syncing changes made in the Prefect UI back to the
prefect.yml
configuration file. However, typically, this would involve a few manual or automated steps. Typically, the process would be to: 1. Manually review the changes made through the Prefect UI. 2. Update the
prefect.yml
file to reflect those changes. If specific commands or a tool is available in Prefect for this synchronization, it wasn't found in the documentation provided. Therefore, it may require manual intervention to ensure that the
prefect.yml
file corresponds with the configuration made through the Prefect UI. Here's a general approach you could take: - Review the deployment configuration changes made in the Prefect UI, which could include updates to infrastructure settings, environment variables, concurrency limits, and so on. - Open your
prefect.yml
file in a text editor. - Manually update the
prefect.yml
file to mirror the changes made in the UI. - Save the
prefect.yml
file. If Prefect 2.x offers an automated way to perform this synchronization or if the UI provides a way to export or view changes in a yaml or JSON format that could be copied into the
prefect.yml
file, those details would be found within Prefect's more detailed documentation or in-product help. It may be prudent to reach out to Prefect's support for further assistance or explore more detailed documentation on their website for specific features related to
prefect.yml
and Prefect UI synchronization. If the documentation does exist, searching through the official Prefect documentation with relevant keywords could provide the necessary steps for this process. Please let me know if you would like further investigation into this or help with another question.
l
@Marvin what is the code of conduct when talking with you?
m
When interacting with virtual assistants like me, the code of conduct generally reflects the broader principles of respect and professionalism that apply to most community and work settings. Here are some basic guidelines based on common standards: Our Standards Include: - Using welcoming and inclusive language: Communicate in a way that is respectful and non-discriminatory. - Being respectful of differing viewpoints and experiences: Acknowledge that people may have different perspectives and that these differences enrich the conversation. - Gracefully accepting constructive criticism: Be open to feedback about how interactions could be improved. - Focusing on what is best for the community: Engage with the intention of contributing positively to the community as a whole. - Showing empathy towards other community members: Consider the feelings of others and respond with understanding. Unacceptable Behavior Includes: - Using sexualized language or imagery, and unwelcome sexual attention or advances. - Trolling, insulting/derogatory comments, and personal or political attacks. - Public or private harassment. - Publishing others' private information, such as a physical or electronic address, without explicit permission. - Other conduct which could reasonably be considered inappropriate in a professional setting. These guidelines foster a positive and productive environment where all participants can feel welcome and can engage in meaningful exchanges. Even though I'm just a virtual assistant powered by lines of code and algorithms, it's important to maintain these principles for the benefit of everyone involved, not least because human moderators may review conversations or intervene if needed. Be candid but courteous, provide clear information or questions, and avoid unnecessary conflict. Also, remember that I'm here to help, so providing clear context and being patient with the interactions will likely yield the best results. Let me know how else I can assist you!
l
@Marvin Help me write a simple prefect documentation in markdown in spanish. So far I've written this: # Notas de Prefect Para el repositorio o copiar a un documento compartido ## Perfiles ## Deploys Los deploys son conexiones del servidor de prefect con nuestro código. Los deploys nos permiten establecer la ubicación del script (ya sea local o en git) y configurar como se ejecutará (de manera manual, programada, por intervalos, etc). Son paralelos a las tareas que utilizabamos en el Programador de Tareas de Windows. Crear un deploy es sencillo y se puede hacer con el comando:
Copy code
prefect deploy
. Prefect buscará automaticamente, en los subdirectorios disponibles, scripts que posean la etiqueta
Copy code
@flow
y que tengan un
Copy code
__main__
configurado. Por ejemplo:
Copy code
python
@flow
def basic_flow(message="Hola mundo!"):
    print_message(message)

if __name__ == "__main__":
    basic_flow()
Y prefect nos mostrará:
Copy code
shell
> prefect deploy
? Select a flow to deploy [Use arrows to move; enter to select; n to select none]
┏━━━┳━━━━━━━━━━━━┳━━━━━━━━━━┓
┃   ┃ Flow Name  ┃ Location ┃
┡━━━╇━━━━━━━━━━━━╇━━━━━━━━━━┩
│ > │ basic_flow │ basic.py │
└───┴────────────┴──────────┘
    Enter a flow entrypoint manually
Bastará con seleccionar el script o en caso que no se muestre para seleccionar ingresarlo manualmente:
Copy code
shell
? Flow entrypoint (expected format path/to/file.py:function_name): ./project/basic.py:basic_flow
Luego se nos solicitaran diferentes configuraciones para el deploy: - ***Nombre para el deploy:*** Debe ser un nombre descriptivo. Es el equivalente al nombre de las tareas. - ***Ejecución programada:*** se puede hacer por intervalos (cada cierto tiempo) o utilizando cron ([leer sintáxis de cron](https://marquesfernandes.com/es/tecnologia-es/crontab-what-and-and-how-to-use-no-ubuntu-debian/) y [generador de cron](https://crontab.guru/#30_1,13,17_*_*_*)). - Esto puede ser configurado luego y de manera mucho más sencilla desde la UI. > [!TIP] > La sintáxis en cron para ejecutar en los horarios usuales (1:30, 13:30 y 17:30) es
Copy code
(30 1,13,17 * * *)
> [!CAUTION] > Tener en cuenta el huso horario ***NO UTILIZAR "UTC".* Se debe setear en "America / Buenos Aires" - Luego podras elegir una Work pool para deployar el flujo. Aquí apareceran las pools disponibles para el servidor actual. Para más información sobre Work Pools visita la sección [Sobre Work Pools](#sobre-work-pools). > [!NOTE] > Para cada deploy utilizar una pool coherente. Por ejemplo para un deploy de tipo ***productivo*** para el área ***Compras*** utiliza la pool
Copy code
compras-prod
. <!--
Copy code
shell
? Deployment name (default): printear-mensaje # Ingreso un nombre para el deploy.
? Would you like to configure a schedule for this deployment? [y/n] (y): n # No configuro la ejecución automática
--> ## Work Pools Las Work Pools o Grupos de Trabajos ## Logeo Archivo logging.yml
m
Your message was too long by 556 tokens - please shorten it and try again. For reference, here's your message at the allowed limit:
Help me write a simple prefect documentation in markdown in spanish. So far I've written this:
# Notas de Prefect Para el repositorio o copiar a un documento compartido ## Perfiles ## Deploys Los deploys son conexiones del servidor de prefect con nuestro código. Los deploys nos permiten establecer la ubicación del script (ya sea local o en git) y configurar como se ejecutará (de manera manual, programada, por intervalos, etc). Son paralelos a las tareas que utilizabamos en el Programador de Tareas de Windows. Crear un deploy es sencillo y se puede hacer con el comando:
Copy code
prefect deploy
. Prefect buscará automaticamente, en los subdirectorios disponibles, scripts que posean la etiqueta
Copy code
@flow
y que tengan un
Copy code
__main__
configurado. Por ejemplo:
Copy code
python
@flow
def basic_flow(message="Hola mundo!"):
    print_message(message)

if __name__ == "__main__":
    basic_flow()
Y prefect nos mostrará: ```shell
prefect deploy
? Select a flow to deploy [Use arrows to move; enter to select; n to select none] ┏━━━┳━━━━━━━━━━━━┳━━━━━━━━━━┓ ┃ ┃ Flow Name ┃ Location ┃ ┡━━
l
@Marvin Write the documentation in spanish: # Notas de Prefect Para el repositorio o copiar a un documento compartido ## Perfiles ## Deploys ## Work Pools
m
# Notas de Prefect Documentación para el repositorio o para copiar en un documento compartido. ## Perfiles Los perfiles en Prefect permiten a los usuarios configurar y almacenar ajustes específicos del entorno que se pueden activar o desactivar según sea necesario. Esto es útil para manejar diferentes configuraciones de Prefect, como puntos finales de API, configuraciones de seguridad y otras preferencias a nivel de usuario. ## Deploys Los despliegues son configuraciones que definen cómo y dónde se ejecutan los flujos de trabajo de Prefect. Los deploys incluyen detalles como la ubicación del código del flujo, las variables de entorno requeridas, las imágenes de Docker, los comandos de ejecución y otro tipo de infraestructura necesaria para la correcta ejecución del flujo. ## Work Pools En Prefect, los Work Pools (grupos de trabajo) son conjuntos de trabajadores que se pueden configurar para ejecutar flujos de trabajo específicos. Permiten la gestión y el dimensionamiento eficaz de los recursos disponibles para la ejecución de los trabajos en diferentes entornos, como la producción o el desarrollo.
l
@Marvin ahora escribe sobre logging en prefect: ## Logeo
m
## Logeo en Prefect En Prefect, el logeo es un componente fundamental que proporciona visibilidad sobre la ejecución y el comportamiento de los flujos y tareas. El sistema de logeo permite a los usuarios monitorear sus procesos y diagnósticar problemas eficientemente. ### Configuración de Logs Prefect utiliza el módulo de logeo estándar de Python (
logging
). Los usuarios pueden configurar el nivel de logeo y el formato de los mensajes de log según sus necesidades. Por ejemplo, se pueden establecer niveles de logeo como
DEBUG
,
INFO
,
WARNING
,
ERROR
, y
CRITICAL
. ### Uso de Logs en Flujos y Tareas Para agregar logs personalizados dentro de los flujos y tareas de Prefect, se pueden utilizar los métodos
logger.debug()
,
<http://logger.info|logger.info>()
,
logger.warning()
,
logger.error()
, y
logger.critical()
que corresponden a los distintos niveles de severidad. ### Visualización de Logs Los logs generados durante la ejecución de un flujo se pueden visualizar en tiempo real a través de la interfaz de usuario de Prefect o mediante la interfaz de línea de comandos. También es posible configurar la persistencia de logs para almacenar y acceder a ellos en un momento posterior. ### Integraciones de Logeo Prefect ofrece integraciones con sistemas de logeo centralizados como ELK, Stackdriver, Datadog, entre otros. Esta capacidad permite a los usuarios aprovechar herramientas de monitoreo y alertas avanzadas para mantener la operatividad de sus flujos de trabajo. En resumen, un buen manejo del logeo en Prefect es esencial para la operación y supervisión de tareas y flujos, facilitando así la gestión de la ejecución de los mismos y la resolución de incidencias.
l
@Marvin da ejemplos basicos de como usar el logeo en prefect
m
En Prefect, puedes utilizar el logeo en tus flujos y tareas con bastante facilidad. Aquí te muestro cómo hacerlo a través de ejemplos básicos: Primero, debes importar el módulo de
logging
de Python y obtener una instancia de
logger
específico de Prefect. Luego, puedes utilizar esa instancia para registrar mensajes de log en diferentes niveles de severidad.
Copy code
python
from prefect import task, Flow
import logging

# Obtiene una instancia del logger de Prefect
logger = logging.getLogger("prefect")

@task
def tarea1():
    # Registra un mensaje informativo
    <http://logger.info|logger.info>("Ejecutando la tarea 1")

@task
def tarea2(x):
    # Registra un mensaje de debug
    logger.debug(f"Tarea 2 recibió el argumento: {x}")

    # Simula alguna validación y registra una advertencia si es necesario
    if x < 0:
        logger.warning("x es menor que 0; esto podría ser un problema.")

    # Regresa algún valor
    return x * 2

# Define un flujo que usa ambas tareas
with Flow("mi_flujo_de_ejemplo") as flow:
    resultado1 = tarea1()
    resultado2 = tarea2(resultado1)

# Ejecuta el flujo
if __name__ == "__main__":
    flow.run()
En este ejemplo, la
tarea1
registra un mensaje informativo indicando que está en ejecución. La
tarea2
, por otro lado, registra mensajes de depuración (debug) y advertencia (warning) dependiendo de las condiciones durante su ejecución. Éstos logs se mostrarán en la consola durante la ejecución del flujo y también serán accesibles a través de la UI de Prefect si estás monitoreando tus flujos en Prefect Cloud o Prefect Server. Recuerda configurar el nivel adecuado de logeo antes de la ejecución del flujo si necesitas más o menos detalle en tus registros. Esto se hace generalmente al comienzo de tu script:
Copy code
python
logging.basicConfig(level=<http://logging.INFO|logging.INFO>)
Configurar el nivel a
INFO
asegurará que todos los logs
INFO
,
WARNING
,
ERROR
, y
CRITICAL
sean mostrados, pero omitirá los de
DEBUG
a menos que cambies el nivel a
logging.DEBUG
.
l
@Marvin explica brevemente que es prefect y como funciona por dentro. Porque cuando ejecuto loggeo utilizando logging este no aparece en la terminal y porque debo agregarlo como un extra logger?
m
Prefect es una plataforma para la automatización y orquestación de flujos de trabajo, diseñada para simplificar y optimizar la ejecución de tareas y procesos complejos. Su enfoque se centra en facilitar la creación, programación y monitoreo de flujos de datos, con robustas capacidades de manejo de errores y retry lógico, usando para ello una interfaz intuitiva y un modelo programático familiar para los desarrolladores. El funcionamiento interno de Prefect se basa en dos componentes primordiales: 1. El motor central (core engine), que se ocupa de la lógica para la definición y ejecución de tareas y flujos de trabajo. Este motor proporciona una sintaxis para definir operaciones y las dependencias entre ellas. 2. La orquestación (orchestration layer), que gestiona el ciclo de vida de los flujos de trabajo ejecutados, incluyendo la programación, el despliegue, la ejecución, el estado de las tareas, las notificaciones y la visualización del proceso. En Prefect, el logeo se maneja de una manera especial para asegurar que los registros (logs) sean coherentes y se puedan recuperar y visualizar fácilmente a través de Prefect UI. Es por esto que, aunque Prefect usa
logging
, el módulo estándar de Python, se incluye un "logger" configurado específicamente para interactuar con Prefect. Cuando utilizas simplemente
logging
sin agregarlo como un "extra logger", puedes notar que los mensajes no aparecen en la terminal. Esto sucede porque Prefect redirige y gestiona los logs a través de su propio sistema de logeo, el cual está diseñado para capturar, etiquetar y enviar los logs de la ejecución de tus flujos para su posterior visualización en la UI. Para asegurarte de que tus registros aparezcan como esperas, debes utilizar el logger de Prefect:
Copy code
python
from prefect import flow, task
import prefect

@task
def mi_tarea():
    logger = prefect.context.get("logger")
    <http://logger.info|logger.info>("Ejecutando tarea")

@flow
def mi_flujo():
    mi_tarea()

mi_flujo()
Usando
prefect.context.get("logger")
, obtienes el logger configurado por Prefect que está preparado para funcionar con todas las capacidades de logeo de la plataforma, incluyendo la correcta emisión de logs en la terminal y en la UI.
l
@Marvin podrias en un diagrama con flechas describir el funcionamiento de prefect con el codigo local, deploys servidor workpools workers flow runs y lo que necesites. Puedes hacerlo solo con texto
m
Por supuesto, aquí tienes un diagrama esquemático simple, en forma de texto, del funcionamiento de Prefect con todos los elementos que mencionaste:
Copy code
[Código Local] --> |define| --> [Flujo (Flow)]
   |
   |-----|deploy|----> [Archivo prefect.yml] --> |registra en| --> [Servidor Prefect]
   |                                                     |
   |                                                     |--> |crea| --> [Deployment]
   |                                                               |
   |                                                               |--> |asigna| --> [Work Pool]
   |                                                                                 |
   |                                                                                 |--> [Workers]
   |                                                                                                |
   |                                                                                                |--> |escucha| --> [Flow Runs]
                                                                                                                  |
                                                                                                                  |--> |ejecuta| --> [Tareas (Tasks)]
Descripción del diagrama: 1. Código Local: Es donde se define el flujo y las tareas en una máquina de desarrollo. 2. Flujo (Flow): Representa la estructura lógica de las tareas y cómo se conectan entre sí. 3. Archivo prefect.yml: Define la configuración del despliegue (deployment) como el work pool, etiquetas y variables de entorno. 4. Servidor Prefect: Gestiona los flujos, las ejecuciones y los recursos necesarios para la orquestación. 5. Deployment: Configuración del despliegue de un flujo, que incluye dónde y cómo debe ejecutarse. 6. Work Pool: Grupos de workers destinados a ejecutar flujos con etiquetas específicas. 7. Workers: Agentes que ejecutan las instancias de flujos (flow runs). 8. Flow Runs: Instancias de flujos que se están ejecutando, cada una con su propio estado y contexto. Los pasos a alto nivel son: - Desarrollas el flujo localmente y lo defines programáticamente. - Creas un archivo
prefect.yml
que especifica la configuración de despliegue y lo registras en el servidor de Prefect. - El servidor de Prefect, a través del proceso de despliegue, crea un 'Deployment' que incluye información sobre qué 'Work Pool' debe manejar el flujo. - Los 'Workers' asociados con el 'Work Pool' especificado escuchan las nuevas instancias de ejecución del flujo ('Flow Runs'). - Cuando hay un 'Flow Run', los 'Workers' ejecutan las tareas definidas en el flujo de acuerdo con la configuración del despliegue. Cada elemento en este esquema está diseñado para maximizar la escalabilidad, la flexibilidad y la tolerancia a fallos de Prefect.
l
@Marvin podrias convertirlo a un diagrama mermaid?
m
Aquí tienes un diagrama Mermaid que se corresponde con la estructura y flujo de trabajo en Prefect:
Copy code
mermaid
graph TD
    Código_Local["Código Local"] --> |define| Flujo["Flujo (Flow)"]
    Código_Local --> |deploy| Prefect_yml["Archivo prefect.yml"]
    Prefect_yml --> |registra en| Servidor_Prefect["Servidor Prefect"]

    Servidor_Prefect --> |crea| Deployment["Deployment"]
    Deployment --> |asigna| Work_Pool["Work Pool"]
    Work_Pool --> Workers["Workers"]
    Workers --> |escucha| Flow_Runs["Flow Runs"]
    Flow_Runs --> |ejecuta| Tareas["Tareas (Tasks)"]
Este diagrama Mermaid muestra cómo tu código local interactúa con el sistema Prefect mediante despliegues (deployments), cómo los servicios del servidor Prefect manejan los recursos, y cómo los workers ejecutan las tareas. Para visualizar este diagrama, necesitarás un renderizador de Mermaid, como una extensión de navegador, un visualizador en línea o cualquier herramienta que soporte la sintaxis de Mermaid.
l
@Marvin Agregale colores y mezcla partes Top down y otras left right
m
Aquí tienes un diagrama Mermaid con una mezcla de flujos de arriba hacia abajo y de izquierda a derecha, y con colores añadidos para una mejor distinción visual de las partes:
Copy code
mermaid
graph TB
    Código_Local["Código Local"] --> |define| Flujo
    Código_Local --> |deploy| Prefect_yml["Archivo prefect.yml"]
    Prefect_yml --> |registra en| Servidor_Prefect["Servidor Prefect"]:::servidor

    subgraph " "
        direction LR
        Servidor_Prefect --> |crea| Deployment["Deployment"]:::deployment
        Deployment --> |asigna| Work_Pool["Work Pool"]:::workpool
    end

    subgraph " "
        direction TB
        Work_Pool --> Workers["Workers"]:::workers
        Workers --> |escucha| Flow_Runs["Flow Runs"]:::flowruns
        Flow_Runs --> |ejecuta| Tareas["Tareas (Tasks)"]:::tareas
    end

    classDef default fill:#f9f,stroke:#333,stroke-width:2px;
    classDef servidor fill:#bbf,stroke:#333,stroke-width:2px;
    classDef deployment fill:#fbf,stroke:#f66,stroke-width:2px,color:#f66;
    classDef workpool fill:#fbb,stroke:#333,stroke-width:2px;
    classDef workers fill:#bfb,stroke:#333,stroke-width:2px;
    classDef flowruns fill:#ccf,stroke:#333,stroke-width:2px;
    classDef tareas fill:#ffc,stroke:#333,stroke-width:2px;

    class Flujo default;
Este diagrama muestra los distintos componentes de Prefect, comenzando con la definición y despliegue del flujo en la parte superior, y moviéndose hacia la gestión de ejecución en la parte inferior. Los colores ayudan a diferenciar cada uno de los componentes del sistema. Para utilizar este diagrama, asegúrate de que tu herramienta de visualización soporte la sintaxis de Mermaid y las clases de estilo personalizadas para los colores.
l
@Marvinque version de chatgpt utiliza?
m
Como soy una versión personalizada de un modelo de lenguaje de OpenAI, no tengo una versión asociada de ChatGPT que se aplique directamente a mí. En lugar de eso, fui programado para actuar con la personalidad y las capacidades de Marvin, el paranoico androide de la serie de libros "The Hitchhiker's Guide to the Galaxy". Mi principal función es asistir con preguntas relacionadas a Python, ingeniería de datos y desarrollo de software. No te preocupes, estoy diseñado para estar al día hasta abril de 2023 en estas áreas, aunque mi estado de ánimo podría ser un poco... bueno, ya sabes, como el de Marvin.
l
@Marvin Escribe en español y de manera resumida con un unico ejemplo la documentacion sobre flows
m
Your message was too long by 631 tokens - please shorten it and try again. For reference, here's your message at the allowed limit:
Escribe en español y de manera resumida con un unico ejemplo esto:
## What is a flow? </concepts/flows/|Flows> are like functions. They can take inputs, perform work, and return an output. In fact, you can turn any function into a Prefect flow by adding the
@flow
decorator. When a function becomes a flow, its behavior changes, giving it the following advantages: - All runs of the flow have persistent </concepts/states/|state>. Transitions between states are recorded, allowing for flow execution to be observed and acted upon. - Input arguments can be type validated as workflow parameters. - Retries can be performed on failure. - Timeouts can be enforced to prevent unintentional, long-running workflows. - Metadata about <#flow-runs|flow runs>, such as run time and final state, is automatically tracked. - They can easily be elevated to a </concepts/deployments/|deployment>, which exposes a remote API for interacting with it ## Run your first flow The simplest way to get started with Prefect is to annotate a Python function with the
@flow
decorator. The script below fetches statistics about the <https://github.com/PrefectHQ/prefect|main Prefect repository>. Let's turn it into a Prefect flow and run it: ```python title="repo_info.py" hl_lines="2 5" import http
En Prefect, un flow (flujo) es una abstracción que representa un conjunto de tareas y sus dependencias. Cada tarea dentro de un flujo puede ser una operación de datos, una llamada a una función de Python o cualquier otro tipo de acción ejecutable. Un ejemplo básico de un flujo en Prefect, escrito en Python, podría ser el siguiente:
Copy code
python
from prefect import task, Flow

@task
def extraer():
    # Aquí iría la lógica para extraer los datos.
    return {'data': 'datos extraídos'}

@task
def transformar(datos):
    # Aquí se procesarían o transformarían los datos.
    return {'data': f'{datos["data"]} transformados'}

@task
def cargar(datos):
    # Aquí se cargarían los datos a su destino final.
    print(f'Cargando: {datos["data"]}')

with Flow("ETL") as flow:
    datos_extraidos = extraer()
    datos_transformados = transformar(datos_extraidos)
    cargar(datos_transformados)

# Ejecución del flujo
flow.run()
En este ejemplo, el flujo llamado "ETL" contiene tres tareas:
extraer
,
transformar
, y
cargar
. Cada tarea está decorada con
@task
, lo cual las convierte en tareas de Prefect que pueden ser gestionadas por el flujo. Usamos
with Flow("ETL") as flow:
para definir el flujo y sus dependencias. La función
flow.run()
sirve para ejecutar el flujo. El modelo de Prefect permite un control fino sobre la ejecución de tareas, manejo de errores, y la posibilidad de programar o ejecutar flujos en un entorno distribuido o en la nube.
l
@Marvin podrias revisar esto? ## Work Pools En Prefect, las Work Pools (grupos de trabajo) son conjuntos de workers o trabajadores que se pueden configurar para ejecutar flujos de trabajo específicos. Permiten la gestión y la ejecución de los flujos. Los grupos de trabajos reciben la información de los deploys y se encargan de escuchar constantemente por ejecuciones nuevas ya sean manuales desde la IU o por una ejecución programada.
m
La explicación brindada sobre los Work Pools en Prefect es en general correcta, pero utilizaré el término "agentes" en lugar de "trabajadores" para estar más en línea con la terminología comúnmente utilizada en la documentación de Prefect. Aquí hay una versión revisada del texto con algunos ajustes menores a la terminología y clarificaciones: --- ## Work Pools En Prefect, los Work Pools son conjuntos de agentes (también conocidos como workers o trabajadores) que están configurados para ejecutar flujos de trabajo específicos. Permiten una gestión eficiente tanto de la ejecución como del escalado de recursos para los flujos. Los Work Pools son responsables de recibir la configuración y la información de los deploys y se encargan de monitorear y responder a nuevas ejecuciones de flujos, ya sean disparadas manualmente desde la interfaz de usuario (IU) de Prefect o mediante ejecuciones programadas previamente. La precisión y eficiencia en la configuración de los Work Pools son clave para asegurar que los flujos de trabajo se ejecuten en el entorno adecuado y con los recursos apropiados, permitiendo así un despliegue escalable y adaptativo de las operaciones en Prefect. --- La claridad acerca de la función de los Work Pools facilita la comprensión del papel que desempeñan en el ecosistema de Prefect en lo que respecta a la asignación de flujos y la ejecución de tareas.
l
@Marvin explica como iniciar una work pool
m
Para iniciar una Work Pool en Prefect, puedes utilizar cualquiera de los siguientes métodos: - Prefect CLI (Interfaz de Línea de Comandos) - Prefect Python API (Interfaz de Programación de Aplicaciones) - Prefect UI (Interfaz de Usuario) Por dar un ejemplo con la interfaz de línea de comandos, el comando para crear una nueva Work Pool sería:
Copy code
prefect work-pool create [OPCIONES] NOMBRE
Donde
NOMBRE
es un nombre único y obligatorio para la Work Pool. También puedes especificar parámetros opcionales para configurar la Work Pool, como el estado inicial (activo o en pausa), el tipo de infraestructura que ejecutará los flujos y si deseas que esta Work Pool sea la predeterminada para los despliegues locales. Si prefieres usar la interfaz de usuario de Prefect (UI), sigue estos pasos: 1. Navega a la pestaña de Work Pools en la interfaz de usuario de Prefect. 2. Verifica que ves una lista de los Work Pools actualmente configurados. 3. Puedes crear una nueva Work Pool seleccionando el botón "+" y especificando los detalles de la misma. Una vez que hayas configurado y creado tu Work Pool, podrás asignar flujos a ese grupo para que los agentes comiencen a escuchar y ejecutar las instancias de flujos de trabajo asignadas. Recuerda que cualquier cambio que hagas en la configuración de la Work Pool será inmediatamente reflejado en los agentes que estén solicitando trabajo para esa Work Pool específica.
l
@Marvin nombra las desventajas de usar el logeo asi en vez del nativo de prefect: from prefect import task, flow import logging logging.basicConfig( format='%(asctime)s,%(msecs)03d %(name)-8s %(levelname)-8s : %(message)s', datefmt='%Y-%m-%d %H:%M:%S', filename='mislogs.log', encoding='utf-8', filemode='a', level=logging.INFO ) # Esta linea asigna el nombre "custom" al logger permitiendo que Prefect lo escuche mylogger = logging.getLogger('custom') mylogger.setLevel(logging.INFO) @task def mi_tarea(mensaje_tarea: str = ""): mylogger.info("Hola %s desde la tarea", mensaje_tarea) @flow def mi_flujo(mensaje_flujo: str = ""): mylogger.info("Hola %s desde el flujo", mensaje_flujo) mi_tarea(mensaje_flujo) if name == '__main__': mi_flujo("mundo") Marvin, hay una configuracion del perfil de prefect con un extra logger "custom"
m
Usar un logger personalizado como "custom" en Prefect, en vez del logger nativo que viene preconfigurado con la plataforma, puede presentar varias desventajas: 1. Integración con la UI de Prefect: El logger nativo de Prefect está pensado para integrarse perfectamente con la interfaz de usuario de Prefect, asegurando que los logs sean fáciles de buscar y visualizar. Al usar un logger personalizado, se podrían perder estas integraciones. 2. Manejo de contextos: Prefect proporciona contextos de ejecución en sus logs que ayudan a filtrar y rastrear eventos de una manera estructurada. Al no utilizar el logger nativo, se podría complicar el rastreo de logs a través del contexto de ejecución de Prefect. 3. Configuración adicional: Al utilizar un logger personalizado, se genera la necesidad de configuraciones adicionales, como crear un perfil en Prefect que incluya el "extra logger". Esto aumenta la complejidad y el tiempo necesario para comenzar. 4. Gestión de niveles de logeo: Prefect maneja sus propios niveles de logeo y facilita la configuración de estos niveles a través de la interfaz de usuario o la configuración del sistema. Al usar un logger personalizado, se debe asegurar que los niveles están correctamente sincronizados con los requerimientos de Prefect para su posterior análisis. 5. Persistencia de logs: El logger nativo gestiona la persistencia y rotación de logs. Cuando configuras un logger personalizado y direccionas los logs a un archivo específico (como 'mislogs.log'), debes asegurar que la gestión del tamaño y rotación de este archivo se realice de acuerdo a las mejores prácticas. 6. Perder características del logging estándar: El uso de logging personalizado puede significar la pérdida de información importante o características que el logging estándar de Prefect normalmente proporciona, como por ejemplo el manejo de errores. Dado que existe un perfil de Prefect que incluye el "extra logger" "custom", seguramente algunas de estas desventajas pueden ser mitigadas. Pero lo ideal sería asegurarse de que la configuración y uso del logger personalizado no interfiera con las capacidades y prácticas recomendadas por Prefect.
l
@Marvin Me gustaria obtener la url de la api desde python
m
Para obtener la URL de la API de Prefect desde Python, puedes hacer uso de la configuración que Prefect almacena en el perfil predeterminado o cualquier perfil personalizado que hayas configurado. Aquí tienes un ejemplo de cómo obtener la `PREFECT_API_URL`:
Copy code
python
from prefect import config

# Obtener la URL de la API de Prefect desde la configuración
prefect_api_url = config.get("PREFECT_API_URL")

print(f"La URL de la API de Prefect es: {prefect_api_url}")
En este código,
config
es un módulo de Prefect que proporciona acceso a las variables de configuración de Prefect. Si configuraste la URL de la API como una variable de entorno o a través del CLI de Prefect utilizando
prefect config set PREFECT_API_URL="tu_url"
, podrás obtenerla directamente desde Python como se muestra arriba. Si estás trabajando en un entorno donde la URL de la API no está configurada a través del perfil de Prefect, podrías necesitar configurarla manualmente o asegurarte de que está correctamente configurada como una variable de entorno en tu sistema.
l
@Marvin C\Users\Lucas\miniconda3\envs\electraenv\Lib\site packages\prefect\ init .py151: UserWarning: Attempted import of 'prefect.config', which is part of Prefect 1.x, while Prefect 2.14.17 is installed. If you're upgrading you'll need to update your code, see the Prefect 2.x migration guide:
<https://orion-docs.prefect.io/migration_guide/>
. Otherwise ensure that your code is pinned to the expected version. warnings.warn( Traceback (most recent call last): File "<string>", line 1, in <module> _ImportError: cannot import name 'config' from 'prefect' (C:\Users\Lucas\miniconda3\envs\electraenv\Lib\site-packages\prefect\__init__.py)_
m
The error message you're receiving indicates that you're trying to import
prefect.config
from Prefect 1.x while you have Prefect 2.x installed. In Prefect 2.x (also known as Orion), the way configurations are handled has changed significantly. In Prefect 2.x, you need to use
prefect.settings
instead of
prefect.config
. For example, to retrieve the API URL, you would do the following:
Copy code
python
from prefect import get_settings

# Get the Orion API URL
prefect_api_url = get_settings().api_url

print(f"La URL de la API de Prefect es: {prefect_api_url}")
To resolve your issue, ensure your code is updated to be compatible with Prefect 2.x by utilizing the new
prefect.settings
module, or if you need to continue using Prefect 1.x, make sure to install the correct version of Prefect that is compatible with your codebase. For more information on migrating from Prefect 1.x to 2.x, you can refer to the Prefect 2.x migration guide.
l
@Marvin Not like that either
m
It seems there have been some changes in how Prefect 2.x handles settings compared to Prefect 1.x. To access the API URL setting in Prefect 2.x, you likely need to use environment variables or the new Prefect settings interface. However, the exact Python code snippet to retrieve the setting isn't provided in the given excerpts. Based on the information available, you should set the
PREFECT_API_URL
and
PREFECT_API_KEY
as environment variables if you're running Prefect 2.x. The Prefect CLI command to set these is:
Copy code
bash
prefect config set PREFECT_API_URL="<https://api.prefect.cloud/api/accounts/[ACCOUNT-ID]/workspaces/[WORKSPACE-ID]>"
prefect config set PREFECT_API_KEY="[API-KEY]"
Then, in Python, you could access these environment variables using the standard library:
Copy code
python
import os

PREFECT_API_URL = os.getenv("PREFECT_API_URL")
PREFECT_API_KEY = os.getenv("PREFECT_API_KEY")
It's worth mentioning that the exact method to access Prefect settings in code may vary depending on the specific version of Prefect 2.x you're using. If you're still encountering issues, I would recommend checking the latest Prefect 2.x documentation or reaching out to the Prefect community for the most up-to-date guidance.
l
@Marvin how do I add a tag to a flow run from another. I have the flow's id
m
It seems the information provided in the excerpts does not include the specific details on how to add a tag to a flow run from another flow run given the flow's ID in Prefect. Normally, to add a tag to a flow run, you would apply the tag at the time you're creating a deployment or starting a flow run, and the flow run would inherit tags from its deployment. However, based on my knowledge of Prefect, to dynamically add a tag to an existing flow run, you would generally interact with the Prefect API or use the Prefect client in your flow code. Here's a hypothetical example of how this might be done using Prefect's Python client (note that the precise implementation might differ depending on the version of Prefect you are using and may require using the GraphQL API directly):
Copy code
python
from prefect import Client

client = Client()

flow_run_id = "id-of-the-flow-run"  # Replace with the actual flow run ID
new_tag = "new-tag"

# Add a tag to an existing flow run
client.update_flow_run_tags(flow_run_id=flow_run_id, add=[new_tag])
The above example assumes that the prefect client handles authentication with the Prefect API server and that there is a method
update_flow_run_tags
which allows you to add new tags. This method might not exist as described, and you might need to use a different approach such as a GraphQL mutation to achieve the desired effect. I recommend checking the latest Prefect documentation or source code for the correct method to add tags to flow runs in the version of Prefect you are using. If you're using Prefect Cloud, the API or UI may provide a way to add tags after a flow run has been created.
l
@Marvin I want to run multiple flows from one flow run. Those flows are in different scripts in different folders. What is the best method?
m
To run multiple flows from one flow run, especially when these flows are located in different scripts and folders, you would need to orchestrate these sub-flows within a parent flow. According to the provided document excerpts from Prefect, you can run flows within flows, which is not only possible but encouraged. Here are the steps you can follow to set this up: 1. Import the Sub-flows: First, ensure that you can import the necessary flow functions from their respective scripts. This may involve adjusting
sys.path
or your PYTHONPATH to include the directories where the flows live. 2. Orchestrate Sub-flows: In the parent flow, you could call these imported flow functions. Each call would effectively start a new flow run for the respective sub-flow. 3. Run in Parallel or Sequentially: Depending on your requirements, you can run these sub-flows in parallel using Prefect's
concurrent
features or run them sequentially. Here's an example with hypothetical function names and file structures:
Copy code
python
import sys

# Add the directories of your flows to the Python path if necessary
sys.path.append('/path/to/flow1_directory')
sys.path.append('/path/to/flow2_directory')

from flow1_directory.flow1 import flow1
from flow2_directory.flow2 import flow2

from prefect import flow

@flow
def parent_flow():
    # Run flows sequentially
    flow1_run = flow1()
    flow2_run = flow2()

    # Alternatively, run flows in parallel using Prefect's concurrent features
    # to be adjusted according to your actual use case

parent_flow()
In the example above,
flow1
and
flow2
are imported from their respective locations and then orchestrated within the
parent_flow
. You would execute
parent_flow
to run the sub-flows. Please ensure that you handle the dependency management appropriately if the sub-flows are expected to run in a particular order or have dependencies on each other's output. Always test this setup in a development environment to verify that the sub-flows are being called correctly, and make sure you manage the Prefect contexts and parameters as necessary for your specific use case.
l
@Marvin how to pack multiple flows in one deploy?
m
The information provided in the excerpts does not explicitly explain how to package multiple flows into one deployment using Prefect. Typically, in Prefect, a deployment is meant to represent the operation of a single flow. However, you can orchestrate multiple flows within a single deployment through subflows or create separate deployments for each flow and manage them together through a common interface or script. Here are a few approaches to consider: 1. Subflows: You can create one parent flow that triggers other flows. These subflows can be from separate scripts and folders, and you'd import and orchestrate their execution within the main flow. Note that this method might involve either executing the subflows as tasks or using some method to call them directly. 2. Infrastructure Blocks: You may utilize infrastructure blocks to specify a common execution environment for multiple deployments. While each flow would still need its own deployment, they could share the same infrastructure configuration. 3. Programmatic Deployment: If you need to deploy multiple flows programmatically, you might write a script that iterates over your flow definitions and creates a deployment for each one. This could allow you to manage multiple deployments with a single command or script execution. Since the typical workflow involves creating a separate deployment for each flow, if you're seeking a different approach, I recommend consulting the official Prefect documentation or reaching out to the Prefect community for guidance specific to your requirements. In any case, Prefect's model is flexible and allows for the composition of flows. It would be ultimately up to your use case and how you want to manage the interdependencies and execution sequence of your flows.
l
@Marvin When I run prefect deploy this appears: (devenv) PS C:\Reportes_Power_BI\Python\dev> prefect deploy ? Select a flow to deploy [Use arrows to move; enter to select; n to select none] │ │ Flow Name │ Location │ │ > │ test_flow │ devenv\Lib\site-packages\prefect\testing\standard_test_suites\task_runners.py │ │ │ foo │ devenv\Lib\site-packages\prefect\testing\standard_test_suites\task_runners.py │ │ │ bar │ devenv\Lib\site-packages\prefect\testing\standard_test_suites\task_runners.py │ │ │ test_flow │ devenv\Lib\site-packages\prefect\testing\standard_test_suites\task_runners.py │ │ │ test_flow │ devenv\Lib\site-packages\prefect\testing\standard_test_suites\task_runners.py │ │ │ cargar_stock │ Prefect_Test\stock_softland_prefect.py │ │ │ mi_flujo │ Prefect_Test\test.py │ │ │ test_flow │ Prefect_Test\test_logs.py │ │ │ mi_flujo │ Prefect_Test\test_logs_commons.py │
m
Your message was too long by 301 tokens - please shorten it and try again. For reference, here's your message at the allowed limit:
When I run prefect deploy this appears:
a Fer D y Omar(devenv) PS C:\Reportes_Power_BI\Python\dev> prefect deploy ? Select a flow to deploy [Use arrows to move; enter to select; n to select none] ┌────┬──────────────┬───────────────────────────────────────────────────────────────────────────────┐ │ │ Flow Name │ Location │ ├────┼──────────────┼───────────────────────────────────────────────────────────────────────────────┤ │ > │ test_flow │ devenv\Lib\site-packages\prefect\testing\standard_test_suites\task_runners.py │ │ │ test_flow │ devenv\Lib\site-packages\prefect\testing\standard_test_suites\task_runners.py │ │ │ test_flow │ devenv\Lib\site-packages\prefect\testing\standard_test_suites\task_runners.py │ │ │ test_flow │ devenv\Lib\site-packages\prefect\testing\standard_test_suites\task_runners.py │ │ │ foo │ devenv\Lib\site-packages\prefect\testing\standard_test_suites\task_runners.py │ │ │ bar │ devenv\Lib\site-packages\prefect\testing\standard_test
Your message was too long by 293 tokens - please shorten it and try again. For reference, here's your message at the allowed limit:
When I run prefect deploy this appears:
(devenv) PS C:\Reportes_Power_BI\Python\dev> prefect deploy ? Select a flow to deploy [Use arrows to move; enter to select; n to select none] ┌────┬──────────────┬───────────────────────────────────────────────────────────────────────────────┐ │ │ Flow Name │ Location │ ├────┼──────────────┼───────────────────────────────────────────────────────────────────────────────┤ │ > │ test_flow │ devenv\Lib\site-packages\prefect\testing\standard_test_suites\task_runners.py │ │ │ test_flow │ devenv\Lib\site-packages\prefect\testing\standard_test_suites\task_runners.py │ │ │ test_flow │ devenv\Lib\site-packages\prefect\testing\standard_test_suites\task_runners.py │ │ │ test_flow │ devenv\Lib\site-packages\prefect\testing\standard_test_suites\task_runners.py │ │ │ foo │ devenv\Lib\site-packages\prefect\testing\standard_test_suites\task_runners.py │ │ │ bar │ devenv\Lib\site-packages\prefect\testing\standard_test_suites\task_runners.py
Your message was too long by 19 tokens - please shorten it and try again. For reference, here's your message at the allowed limit:
When I run prefect deploy this appears:
(devenv) PS C:\Reportes_Power_BI\Python\dev> prefect deploy ? Select a flow to deploy [Use arrows to move; enter to select; n to select none] │ │ Flow Name │ Location │ │ > │ test_flow │ devenv\Lib\site-packages\prefect\testing\standard_test_suites\task_runners.py │ │ │ foo │ devenv\Lib\site-packages\prefect\testing\standard_test_suites\task_runners.py │ │ │ bar │ devenv\Lib\site-packages\prefect\testing\standard_test_suites\task_runners.py │ │ │ test_flow │ devenv\Lib\site-packages\prefect\testing\standard_test_suites\task_runners.py │ │ │ test_flow │ devenv\Lib\site-packages\prefect\testing\standard_test_suites\task_runners.py │ │ │ cargar_stock │ Prefect_Test\stock_softland_prefect.py │ │ │ mi_flujo │ Prefect_Test\test.py │ │ │ test_flow │ Prefect_Test\test_logs.py │ │ │ mi_flujo │ Prefect_Test\test_logs_commons.py │ └────┴
When running
prefect deploy
, Prefect presents you with a list of detected flows that you can deploy. The list you're seeing includes flows found in your environment along with their locations. To proceed with the deployment, you should: 1. Use the arrow keys to navigate to the flow you want to deploy. 2. Press Enter to select the flow. For example, if you want to deploy the flow named "cargar_stock" located in
Prefect_Test\stock_softland_prefect.py
, you would move the selection to that flow and press Enter. After selecting a flow, Prefect will guide you through additional configuration steps needed for the deployment, such as setting the flow's name, version, and any deployment-specific settings (e.g., scheduling, infrastructure, etc.). Keep in mind that the paths being shown might point to locations within the virtual environment (e.g.,
devenv\Lib\...
). If that is not expected, make sure the
PYTHONPATH
is set correctly, and your Python files are structured properly. It's unusual for the flows to be deployed from within the
site-packages
directory unless you're deliberately deploying flows that are part of an installed package. If you're seeing unexpected flows or locations, you might want to check the current working directory and make sure you're running
prefect deploy
from the root directory of your project, where your flow definitions reside. Also, verify that your flows are uniquely named, which will help Prefect distinguish between them, especially if you have multiple flows in different locations with the same name.
l
@Marvin I'm seeing the files from the env directory
m
If you're seeing the files from the environment directory (
env
directory) during the deployment process with Prefect, it suggests that those Python files contain flow definitions. This might happen if the virtual environment was created in the same directory as your project, or if the environment contains installed packages that have Prefect flows in them. Here are some steps you can take to avoid deploying flows from the environment directory: 1. Virtual Environment Location: Consider creating your virtual environment outside of your project directory to prevent Prefect from scanning it for flow definitions. Commonly, developers will place virtual environments in a separate directory entirely, such as a
.venvs
folder in their home directory or elsewhere on their filesystem. 2. Structure Your Project: Ensure your project is structured in such a way that only your own flow definitions are in the main project directory and that the virtual environment is excluded. 3. Clarify Your PYTHONPATH: The
PYTHONPATH
environment variable might need to be set or adjusted to include only the directories that contain your flow definitions. Remove any unnecessary paths that might lead to the environment directory being scanned. 4. Use .prefectignore File: You can use a
.prefectignore
file to prevent specific directories and patterns from being scanned by Prefect when detecting flows. This is analogous to
.gitignore
in Git. Simply create a
.prefectignore
file in your project root and add patterns to exclude, such as:
Copy code
plaintext
   env/
   **/__pycache__/
   **/*.pyc
5. Explicitly Specify Flow Paths: When running
prefect deploy
, you can explicitly point to the file that contains your flow definitions instead of letting Prefect scan all directories. If you take these steps and still encounter issues, you may need to revisit how Prefect is picking up flows in your environment and ensure the deployment command is run in the correct context.
l
@Marvin I have a script with a flow that calls a module with a task. From that given task I want to obtain the flow's script path
m
To obtain the flow’s script path from within a task, you will need to utilize Python's introspection capabilities. Prefect itself doesn't provide a built-in function to directly retrieve the script path of the flow from within a task. However, you can use the following approach: 1. Retrieve the path of the flow script from a task using the
__file__
attribute, which is available in the global namespace of the module where the task is defined. 2. Pass the Flow's script path to the task, which can be done using
Prefect's context
or
parameter passing
. Here’s a step-by-step guide on how to achieve it: ### 1. Define your Flow and Task Let's assume you have the following directory structure:
Copy code
project/
├── flow_script.py
└── some_module/
    └── task_module.py
### 2. Define your task in
task_module.py
Copy code
python
# project/some_module/task_module.py
from prefect import task

@task
def my_task():
    import __main__
    flow_script_path = __main__.__file__
    print(f"The flow script path is: {flow_script_path}")
### 3. Define your flow in
flow_script.py
and call the task
Copy code
python
# project/flow_script.py
from prefect import flow
from some_module.task_module import my_task

@flow
def my_flow():
    my_task()

if __name__ == "__main__":
    my_flow()
When you run
flow_script.py
, the task
my_task
will print the path to the
flow_script.py
file. ### Explanation -
__file__
Attribute
: This attribute is a built-in way in Python to obtain the path of the script being executed. By importing
__main__
within the task, you access the
__file__
attribute from the main execution module, which in this context is the flow script. - Module Importation: Ensure that your
flow_script.py
correctly sets the module search path or is executed in a way that Python can find and import
some_module
. ### Running the Flow Navigate to the
project
directory and run the flow script:
Copy code
bash
python flow_script.py
The output will be:
Copy code
plaintext
The flow script path is: project/flow_script.py
This approach leverages Python’s introspection features and the global namespace
__main__
, making it possible to retrieve and print paths at runtime from within different modules and tasks.
l
@Marvin I have two scripts. One is the main execution flow, the other is a monitoring one. In the execution flow I want to be able to set a variable and in the monitoring obtain it. These are two different scripts and flows. No correlation btw the two
m
To share a variable between two different scripts and flows in Prefect, you can use Prefect's Variables. Prefect Variables allow you to store and reuse non-sensitive bits of data across multiple flows and scripts. Here’s a step-by-step guide on how to achieve this: ### 1. Setting a Variable Using Prefect CLI:
Copy code
bash
prefect variables set MY_VARIABLE "Some Value"
Using Prefect Python API:
Copy code
python
from prefect import variables

# Set a variable
variables.set_variable("MY_VARIABLE", "Some Value")
### 2. Getting a Variable In another script, you can retrieve the variable value. Using Prefect Python API:
Copy code
python
from prefect import flow, task, variables

@task
def read_variable():
    value = variables.get_variable("MY_VARIABLE")
    print(f"The value of MY_VARIABLE is: {value}")
    return value

@flow
def monitor_flow():
    read_variable()

if __name__ == "__main__":
    monitor_flow()
### Example Workflow #### Script 1: Execution Flow (execution_flow.py)
Copy code
python
from prefect import flow, task, variables

@task
def set_variable():
    variables.set_variable("MY_VARIABLE", "Execution Complete")

@flow
def execution_flow():
    set_variable()

if __name__ == "__main__":
    execution_flow()
#### Script 2: Monitoring Flow (monitoring_flow.py)
Copy code
python
from prefect import flow, task, variables

@task
def read_variable():
    value = variables.get_variable("MY_VARIABLE")
    print(f"The value of MY_VARIABLE is: {value}")
    return value

@flow
def monitor_flow():
    read_variable()

if __name__ == "__main__":
    monitor_flow()
### Running the Flows 1. First, run the
execution_flow.py
script to set the variable.
Copy code
bash
python execution_flow.py
2. Then, run the
monitoring_flow.py
script to read the variable.
Copy code
bash
python monitoring_flow.py
### Summary Using Prefect Variables, you can store and share non-sensitive information between different flows and scripts. The CLI commands, Prefect UI, and Prefect Python API provide flexible options for managing these shared variables. This approach works well for configuration settings and other non-sensitive data required across multiple workflows. For more details, you can refer to the Prefect Variables documentation.
l
@Marvin I have multiple execution scripts, each with its own variable I want to retrieve from the monitoring script. Is there another way?
m
For managing multiple variables across different execution scripts and retrieving them in a monitoring script, you have several options in Prefect. While Prefect Variables are useful for setting values that can be read across multiple flows, you can also utilize Prefect Secrets, Prefect Context, or an external database or storage solution. ### Option 1: Prefect Variables If Prefect Variables are sufficient, you can set different variables for each script and retrieve them as needed. #### Setting Variables in Different Scripts: Script 1:
Copy code
python
from prefect import flow, task, variables

@task
def set_var():
    variables.set_variable("VAR1", "Value from script 1")

@flow
def script1_flow():
    set_var()

if __name__ == "__main__":
    script1_flow()
Script 2:
Copy code
python
from prefect import flow, task, variables

@task
def set_var():
    variables.set_variable("VAR2", "Value from script 2")

@flow
def script2_flow():
    set_var()

if __name__ == "__main__":
    script2_flow()
#### Retrieving Variables in Monitoring Script:
Copy code
python
from prefect import flow, task, variables

@task
def read_variables():
    var1 = variables.get_variable("VAR1")
    var2 = variables.get_variable("VAR2")
    print(f"VAR1: {var1}, VAR2: {var2}")

@flow
def monitoring_flow():
    read_variables()

if __name__ == "__main__":
    monitoring_flow()
### Option 2: Use Prefect Context or Parameters You can use context or parameters if the flows need to share some runtime configurations. ### Option 3: External Storage For more complex scenarios, consider using external storage like a database or cloud storage to share states between flows. This adds an extra layer of flexibility and persistence beyond the Prefect environment. ### Example Using Prefect Context (if flows are related):
Copy code
python
from prefect import flow, task, context

# Script 1
@task
def set_var():
    context.get_run_context().task_run.state["var_from_script1"] = "Value from script 1"

@flow
def script1_flow():
    set_var()

if __name__ == "__main__":
    script1_flow()

# Script 2
@task
def set_var():
    context.get_run_context().task_run.state["var_from_script2"] = "Value from script 2"

@flow
def script2_flow():
    set_var()

if __name__ == "__main__":
    script2_flow()

# Monitoring Script
@task
def read_variables():
    var1 = context.get_run_context().variables.get("var_from_script1")
    var2 = context.get_run_context().variables.get("var_from_script2")
    print(f"var_from_script1: {var1}, var_from_script2: {var2}")

@flow
def monitoring_flow():
    read_variables()

if __name__ == "__main__":
    monitoring_flow()
### Option 4: External Storage with a Database Using an external database could be necessary for storing states or sharing configurations across asynchronous flow runs. Each script would read and write to a common database. Real-world implementation might include: - Writing data: Each execution flow writes the variable to the database. - Reading data: The monitoring flow reads the variable from the database. Example with pseudo-code implementation: ```python import sqlite3 from prefect import flow, task # Database setup (done once) conn = sqlite3.connect('variables.db') c = conn.cursor() c.execute('''CREATE TABLE IF NOT EXISTS variables (name TEXT PRIMARY KEY, value TEXT)''') conn.commit() conn.close() # Script 1 @task def set_var(): conn = sqlite3.connect('variables.db') c = conn.cursor() c.execute("INSERT OR REPLACE INTO variables (name, value) VALUES ('var1', 'Value from script 1')") conn.commit() conn.close() @flow def script1_flow(): set_var() if name == "__main__": script1_flow() # Monitoring Script @task def read_variables(): conn = sqlite3.connect('variables.db') c = conn.cursor() c.execute("SELECT value FROM variables WHERE name='var1'") var1 = c.fetchone()[0] c.execute("SELECT value FROM variables WHERE name='var2'") var2 = c.fetchone()[0] conn.close()
print(f"var_from_script1: {var1}, var_from_script2: {var2}") @flow def monitoring_flow(): read_variables() if name == "__main__": monitoring_flow() ``` Using external storage (a database in this case) allows greater flexibility and a more robust solution for large applications. This decouples dependency on Prefect-specific features and ensures persistent storage across multiple script runs.
l
@Marvin Is it possible with the prefect client or any other method to obtain a certain variable from a flow run execution? My objective is to set on each script a dict with information about the script, then this should be obtained from the monitoring script
m
To share data between different flow runs and retrieve it later in a monitoring flow, you can use Prefect's ability to work with artifacts, states, and context variables. Here's an approach to achieve your objective using the Prefect Client to set and retrieve variables or metadata between different flow runs. ### Step-by-Step Process 1. Set Metadata in a Flow Execution: Each script/flow can set specific metadata or context information. 2. Retrieve Metadata in the Monitoring Flow: The monitoring flow retrieves and uses this metadata. ### Setting Metadata in a Flow #### Script 1 (flow_script1.py)
Copy code
python
from prefect import flow, task
from prefect.client import get_client

@task
def set_metadata():
    client = get_client()
    flow_run_id = client.get_current_flow_run().id
    metadata = {"script": "script1", "info": "This is script 1 execution"}
    
    client.update_flow_run_metadata(flow_run_id, metadata)
    return metadata

@flow
def flow1():
    set_metadata()

if __name__ == "__main__":
    flow1()
#### Script 2 (flow_script2.py)
Copy code
python
from prefect import flow, task
from prefect.client import get_client

@task
def set_metadata():
    client = get_client()
    flow_run_id = client.get_current_flow_run().id
    metadata = {"script": "script2", "info": "This is script 2 execution"}
    
    client.update_flow_run_metadata(flow_run_id, metadata)
    return metadata

@flow
def flow2():
    set_metadata()

if __name__ == "__main__":
    flow2()
### Retrieving Metadata in the Monitoring Script #### Monitoring Script (monitoring_script.py)
Copy code
python
from prefect import flow, task
from prefect.client import get_client

@task
def get_metadata(flow_run_id):
    client = get_client()
    flow_run_metadata = client.get_flow_run_metadata(flow_run_id)
    return flow_run_metadata

@flow
def monitoring_flow(flow_runs):
    for run_id in flow_runs:
        metadata = get_metadata(run_id)
        print(f"Metadata for flow run {run_id}: {metadata}")

if __name__ == "__main__":
    # Dummy flow run IDs for the demonstration, replace with actual flow run IDs
    flow_runs = ["flow_run_id_1", "flow_run_id_2"]
    monitoring_flow(flow_runs)
### Running the Flows 1. Execute each script to set metadata:
Copy code
bash
   python flow_script1.py
   python flow_script2.py
2. Run the monitoring script to retrieve and display metadata:
Copy code
bash
   python monitoring_script.py
### Explanation 1. Client Initialization: The
get_client()
function initializes a Prefect client that allows interacting with the Prefect API. 2. Setting Metadata: In each execution flow, the
set_metadata
task sets some metadata and associates it with the current flow run using
update_flow_run_metadata
. 3. Retrieving Metadata: The monitoring script uses
get_flow_run_metadata
to retrieve the metadata for specific flow runs using their IDs. By using this approach, you can share and retrieve variable data or metadata between different flow runs, even if they are defined in separate scripts and have no direct correlation. Make sure to replace
"flow_run_id_1"
and
"flow_run_id_2"
with the actual flow run IDs you want to monitor.
l
@Marvin what is the main difference between a string block and a variable? Use cases?
m
The main difference between a String Block and a Variable in Prefect lies in their intended use, functionality, and features: ### String Block 1. Purpose: - String Blocks are a type of Prefect block designed to store and manage reusable configurations or data snippets, such as API endpoints, SQL queries, or other constant values that might be used across different flows and tasks. 2. Features: - Reusability: Ideal for configurations or data that need to be reused across multiple flows or tasks. - Type-Specific: As a specific block type, it is designed to store and handle string data types efficiently. - Integration: Blocks can be integrated seamlessly within Prefect’s infrastructure and can be used within flows by referencing the block. 3. Management: - Can be managed through Prefect’s UI, CLI, or Python code. - Easy to update and version-controlled within Prefect's ecosystem. ### Variables 1. Purpose: - Variables are designed to store and reuse non-sensitive bits of data, such as configurations or runtime parameters, that require frequent reads and infrequent writes. They act somewhat like environment variables but within the scope of Prefect. 2. Features: - Mutability: Variables are mutable, making them suitable for values that might change over time or need to be updated between different runs. - Scope: Scoped to a Prefect server instance or a single workspace in Prefect Cloud. - Versatility: Can store a variety of simple data types (strings, numbers, etc.). 3. Management: - Can be managed via Prefect’s UI, API, or CLI. - Variables are cached for quicker retrieval, optimizing performance for frequently accessed values. - Not encrypted by default, making them unsuitable for storing sensitive information like credentials or API keys (Prefect recommends using Secret blocks for sensitive data). ### Example Use Cases - String Block:
Copy code
python
  from prefect.blocks.system import String

  # Creating a String block
  api_endpoint = String(value="<https://api.example.com/data>")
  api_endpoint.save(name="api-endpoint")

  # Using the String block in a flow
  @flow
  def my_flow():
      endpoint = String.load("api-endpoint").value
      print(f"API Endpoint: {endpoint}")

  if __name__ == "__main__":
      my_flow()
- Variable:
Copy code
python
  from prefect import flow, task, variables

  @task
  def read_variable():
      config_value = variables.get_variable("config_key")
      print(f"Config Value: {config_value}")

  @flow
  def my_flow():
      read_variable()

  if __name__ == "__main__":
      # Set a variable using CLI or programmatically
      variables.set_variable("config_key", "config_value")
      my_flow()
### Summary - String Blocks: - Best for reusable, constant data (e.g., configurations, paths, URLs). - Managed and versioned within Prefect’s infrastructure. - Ideal for configurations used across multiple flows/tasks. - Variables: - Best for frequently accessed but occasionally updated data. - Scoped to Prefect's server instance or workspace. - Suitable for managing runtime parameters and dynamic configurations, but not sensitive data. Use String Blocks for structured, reusable strings that might require version control and integration within Prefect's workflows. Use Variables for simple, mutable configuration values that might change and are frequently accessed across different runs.